Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 66-70     DOI: 10.6046/gtzyyg.2013.01.12
Technology and Methodology |
Extraction of urban impervious surface information from TM image
LI Weina1,2, YANG Jiansheng3, LI Xiao1,2, ZHANG Jilong2,4, LI Shiwei1,2
1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;
2. Opto-Electronic Information and Instrument Engineering Technology Research Center of Shanxi Province, North University of China, Taiyuan 030051, China;
3. Department of Geography Ball State University Muncie, IN 47036, USA;
4. Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China
Download: PDF(3351 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Based on analyzing the theory of the Optimum Band Combination, Principal Component Analysis (PCA) and NDISI, this paper presents an improved method, i.e., "experimental layer stack", to extract impervious surface of Taiyuan city, Shanxi Province, from Landsat TM image. Both unsupervised and supervised classification methods were used to classify the original multi-band image, PCA image, NDISI and experimental band combination images. The accuracies of the classification were assessed using 256 sampling points randomly selected from Google Earth high resolution image of Taiyuan. By comparison and analysis, the authors found that the experimental B combination method obtained the highest overall accuracy of 87.72% with the Kappa coefficient of 0.85.

Keywords snow cover      mixed pixel decomposition      linear mixture model      end-member selection      Tianshan Mountains     
:  TP79  
Issue Date: 21 February 2013
E-mail this article
E-mail Alert
Articles by authors
KE Chang-qing
Cite this article:   
JIN Xin,KE Chang-qing. Extraction of urban impervious surface information from TM image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 66-70.
URL:     OR
[1] Arnold C L,Gibbons C J.Impervious surface coverage:The emergence of a key environmental indicator[J].Journal of the American Planning Association,1996,62(2):243-258.
[2] Brabec E,Schulte S,Richards P.Impervious surfaces and water quality:A review of current literature and its implications for watershed planning[J].Journal of Planning Literature,2002,16(4):499-514.
[3] 王俊松,杨逢,贺彬,等.利用QuickBird影像提取城市不透水率的研究[J].遥感信息,2008(3):69-73. Wang J S,Yang F,He B,et al.Study on reducing shadow impact in the extraction impervious surface coverage of urban based on QuickBird image[J].Remote Sensing Information,2008(3):69-73.
[4] Xu H Q.Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index(NDISI)[J].Photogrammetric Engineering and Remote Sensing,2010,76(5):557-565.
[5] 徐涵秋.一种快速提取不透水面的新型遥感指数[J].武汉大学学报:信息科学版,2008,33(11):1150-1153. Xu H Q.A new remote sensing index for fastly extracting impervious surface information[J].Geomatics and Information Science of Wuhan University,2008,33(11):1150-1153.
[6] 姚静,武文波,康停军,等.基于TM图像的城市绿地信息提取方法研究[J].测绘科学,2010,35(1):113-115. Yao J,Wu W B,Kang T J,et al.Extraction method of urban vegetation information based on TM image[J].Science of Surveying and Mapping,2010,35(1):113-115.
[7] 欧春江.实例分析遥感图像处理中的主成分分析[J].测绘与空间地理信息,2006,29(5):56-59. Ou C J.Research on principal component analysis of remote sensing image processing through example[J].Geomatics and Spatial Information Technology,2006,29(5):56-59.
[8] 贾科利,常庆瑞.利用主成分分析法提取水体信息[J].淮阴师范学院学报:自然科学版,2006,5(3):242-245. Jia K L,Chang Q R.Extracting water body information using principal components analysis[J].Journal of Huaiyin Techers College:Natural Science Edition,2006,5(3):242-245.
[9] 张杰夫.广州市城市绿地提取方法研究[J].广东农业科学,2011(11):180-181,205. Zhang J F.Extraction method of urban vegetation information from Guangzhou[J].Guangdong Agricultural Sciences,2011(11):180-181,205.
[10] 高珊,侯淑涛,刘义,等.遥感图像变化信息提取方法研究[J].中国科技信息,2008(24):31-32. Gao S,Hou S T,Liu Y,et al.Extraction method of variational information from remote sensing image[J].China Science and Technology Information,2008(24):31-32.
[11] 常胜.TM遥感影像彩色合成最佳波段组合研究[J].湖北民族学院学报:自然科学版,2010,28(2):230-232,235. Chang S.Research on the optimal band combination to composite pseudo color image of TM image[J].Journal of Hubei University for Nationalities:Natural Science Edition,2010,28(2):230-232,235.
[12] 徐磊,侯立春,杨强,等.利用TM影像提取土地利用/覆被信息的最佳波段研究[J].湖北大学学报:自然科学版,2011,33(1):119-122. Xu L,Hou L C,Yang Q,et al.Study on optimum band in land use/land cover information extraction using TM image[J].Journal of Hubei University:Natural Science,2011,33(1):119-122.
[13] 刘建平.高光谱遥感数据处理分析软件系统设计与实现[D].合肥:中国科学技术大学,2001:22-23. Liu J P.Software system design and implementation of hyperspectral remote sensing data processing[D].Hefei:University of Science and Technology of China,2001:22-23.
[14] 吴志杰,赵书河.基于TM图像的"增强的指数型建筑用地指数"研究[J].国土资源遥感,2012,24(2):50-55. Wu Z J,Zhao S H.A study of enhanced index-based built-up index based on landsat TM imagery[J].Remote Sensing for Land and Resources,2012,24(2):50-55.
[1] ZHANG Hongli, LUO Weiran, LI Yan. Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(4): 33-40.
[2] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[3] Dong WANG, Fengbing LAI, Mengyu CHEN, Shujiang CHEN, Tiecheng HUANG, Xiang JIA. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Land & Resources, 2019, 31(1): 187-194.
[4] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[5] CHENG Hongxia, LIANG Fengchao, LI Shuai, LIN Yuejiang. Spatial clustering analysis of atmospheric precipitable water in the Tianshan Mountains[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 116-121.
[6] YAN Yunpeng, LIU Gang, LIU Jianyu, HAN Cong, ZHAO Zixian. Snow cover remote sensing monitoring in the west of Ngari area in northern Tibet from 2013 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 185-190.
[7] YAN Fuli, XU Jianguo, LU Zhihong. Characteristics of multi-exposure images of BJ-1 intelligent micro satellite and its applications to snow cover extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 28-34.
[8] XU Jianhui, SHU Hong, LI Yang. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
[9] JIN Xin, KE Chang-qing. Monitoring of Snow Cover Changes in Tianshan Mountains Based on Mixed Pixel Decomposition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 146-151.
[10] CHEN Xiao-Na, BAO An-Ming, LIU Ping. Quality Assessment of MOD10A1 in the Tianshan Mountains Based on Multiple Statistical Sample Scales[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 80-85.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech