Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 33-40     DOI: 10.6046/gtzyyg.2020.04.05
|
Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition
ZHANG Hongli1(), LUO Weiran2(), LI Yan1,2
1. Zhengzhou Vocational College of Industrial Safety, Zhengzhou 450000, China
2. School of Water Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
Download: PDF(5093 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Spatiotemporal fusion image can meet the needs of large-scale, high-precision and rapid change of surface cover monitoring, and hence has been widely used in environmental, hydrological and agricultural monitoring and other fields. In this paper, based on different types of remote sensing data, the authors propose a method of remote sensing image fusion based on particle swarm optimization (PSO) and linear mixed pixel decomposition. First of all, the PSO method is applied to the calculation of the end-point reflectance through the statistics of the different range of the end-point reflectance, and then the remote sensing image fusion is realized by considering the difference of the end-point reflectance between the high and low spatial resolution images and the space-time weight. Finally, the comparison with the existing methods shows that the proposed method can effectively improve the accuracy of the prediction image produced by data fusion. The root mean square error and spatial structure similarity index predicted in this paper are better than the results of the enhanced spatial and temporal data fusion model(ESTDFM). Therefore, the proposed method would be of great value for the study of land cover change monitoring.

Keywords spatiotemporal fusion      mixed pixel decomposition      particle swarm optimization      moving window     
:  TP751  
  P237  
Corresponding Authors: LUO Weiran     E-mail: 2383499173@qq.com;171230855@qq.com
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongli ZHANG
Weiran LUO
Yan LI
Cite this article:   
Hongli ZHANG,Weiran LUO,Yan LI. Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(4): 33-40.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.05     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/33
Fig.1  Technical flow chart
Fig.2  Study area of standard false color in near infrared, red and green bands
Fig.3  Change of ERGAShand ERGASl
Fig.4  Results of standard false fusion in near infrared, red and green bands
Fig.5  Scatter diagram of predicted and observed values in near infrared, red and green bands
波段 ESTDFM 本文方法
RMSE R2 AD SSIM RMSE R2 AD SSIM
绿光 0.018 0.87 0.002 6 0.84 0.017 0.89 0.000 72 0.86
红光 0.026 0.87 -0.014 0 0.84 0.025 0.89 -0.006 20 0.85
近红外 0.051 0.84 0.039 0 0.83 0.035 0.86 0.002 90 0.85
Tab.1  Accuracy evaluation results of two methods
[1] 邬明权, 王洁, 牛铮, 等. 融合MODIS与Landsat数据生成高时间分辨率Landsat数据[J]. 红外与毫米波学报, 2012,31(1):80-84.
[1] Wu M Q, Wang J, Niu Z, et al. A model for spatial and temporal data fusion[J]. Journal of Infrared and Millimeter Waves, 2012,31(1):80-84.
[2] 杨军明, 吴昱, 魏永霞, 等. 多源数据融合的高时空分辨率植被指数生成[J]. 遥感学报, 2019,23(5):935-943.
[2] Yang J M, Wu Y, Wei Y X, et al. A model for the fusion of multi-source data to generate high temporal and spatial resolution VI data[J]. Journal of Remote Sensing, 2019,23(5):935-943.
[3] Gevaert, C M, Garcia-Haro, F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,156(1):34-44.
[4] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018,30(2):1-11.doi: 10.6046/gtzyyg,2018.02.01.
[4] Dong W Q, Meng J H. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land and Resources, 2018,30(2):1-11.doi: 10.6046/gtzyyg,2018.02.01.
[5] 杨敏, 杨贵军, 陈晓宁, 等. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018,30(1):54-62.doi: 10.6046/gtzyyg.2018.01.08.
[5] Yang M, Yang G J, Chen X N, et al. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land and Resources, 2018,30(1):54-62.doi: 10.6046/gtzyyg.2018.01.08.
[6] Meng J H, Wu B F, Du X, et al. Method to construct high spatial and temporal resolution NDVI dataset-STAVFM[J]. Journal of Remote Sensing, 2011,15(1):44-59.
doi: 10.11834/jrs.20110104 url: http://www.jors.cn/jrs/ch/reader/view_abstract.aspx?file_no=20110104&flag=1
[7] Alysha D P. MODIS-based change detection for Grizzly Bear habitat mapping in Alberta[J]. Photogrammetric Engineering and Remote Sensing, 2008,74(8):973-985.
doi: 10.14358/PERS.74.8.973 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=74&issue=8&spage=973
[8] Ju J, Roy D P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally[J]. Remote Sensing of Environment, 2008,112(3):1196-1211.
[9] 黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017(10):294-301.
[9] Huang B, Zhao Y Q. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017(10):294-301.
[10] 魏然, 单杰. 城市地表温度影像时空融合方法研究[J]. 武汉大学学报(信息科学版), 2018,43(3):428-435.
[10] Wei R, Shan J. Spatial and temporal fusion for urban land surface temperature image mapping[J]. Geomatics and Information Science of Wuhan University, 2018,43(3):428-435.
[11] Marfai M A, Almohammad H, Dey S. Coastal dynamic and shoreline mapping:Multi-sources spatial data analysis in Semarang Indonesia[J]. Environmental Monitoring and Assessment, 2008,142(1):297-308.
[12] Arai E, Shimabukuro Y E, Pereira G. A multi-resoluticm multi-temporal technique for detecting and mapping deforestation in the Brazilian Amazon rainforest[J]. Remote Sensing, 2011,3(9):1943-1956.
[13] Huang B, Zhang H. Spatio-temporal reflectance fusion via unmixing:Accounting for both phenological and land-cover changes[J]. International Journal of Remote Sensing, 2014,35(16):6213-6233.
[14] Song H, Huang B. Spatiotemporal satellite image fusion through one-pair image learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4):1883-1896.
[15] Gao F, Masek J, Schwaller M. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081 url: http://ieeexplore.ieee.org/document/1661809/
[16] Hilker T, Wulder M A, Coops N C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007 url: https://linkinghub.elsevier.com/retrieve/pii/S003442570900087X
[17] Zhu X L, Chen J, Gao F. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010,114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710001884
[18] Zurita-Milla R, Clevers J, Schaepman M E. Unmixing-based Landsat TM and MERIS FR data fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2008,5(3):453-457.
[19] Maselli F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses[J]. Remote Sensing of Environment, 2001,75(1):29-38.
[20] Busetto L, Meroni M, Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment, 2008,112(1):118-131.
[21] Zhang W, Li A N, Jin H A. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data[J]. Remote Sensing, 2013,5(10):5346-5368.
doi: 10.3390/rs5105346 url: http://www.mdpi.com/2072-4292/5/10/5346
[22] 张兵, 孙旭, 高连如, 等. 一种基于离散粒子群优化算法方法的高光谱图像端元提取方法[J]. 光谱学与光谱分析, 2011,31(9):2455-2461.
[22] Zhang B, Sun X, Gao L R, et al. A method of endmember extraction in hyperspectral remote sensing images based on discrete particle swarm optimization[J]. Spectroscopy and Spectral Analysis, 2011,31(9):2455-2461.
doi: 10.3964/j.issn.1000-0593(2011)09-2455-07 url: http://dx.doi.org/10.3964/j.issn.1000-0593(2011)09-2455-07
[23] Hadhoud M M, Dessouky M I, El-Samie F E A, et al. Adaptive image interpolation based on local activity levels[C]// Proceedings of the Twentieth National Radio Science Conference. IEEE, 2003:C4-1.
[24] Wald L. Data fusion,definitions and architectures:Fusion of images of different spatial resolutions[M]. Pressesdes MINES, 2002.
[25] Zhu X L, Helmer E H, Gao F. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016,172(1):165-177.
[1] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[2] Chenlie SHI, Xuhong WANG, Meng ZHANG, Zhuang LIU, Xinming ZHU. Analysis of the applicability of three remote sensing spatiotemporal fusion algorithms in flood monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(2): 111-119.
[3] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[4] Jinxia LYU, Weiguo JIANG, Wenjie WANG, Yinghui LIU, Yue DENG, Xiaoya WANG. Wetland landscape evolution and its relation to human disturbance in Xiong’an New Area based on the moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 140-148.
[5] Wenquan DONG, Jihua MENG. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 1-11.
[6] JIN Xin, KE Chang-qing. Monitoring of Snow Cover Changes in Tianshan Mountains Based on Mixed Pixel Decomposition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 146-151.
[7] HONG Hong-Jia, PENG Xiao-Chun, CHEN Zhi-Liang, ZHANG Xing-Xing, LIU Qiang. The Investigation of Spatiotemporal Patterns of Landscape Fragmentation
during Rapid Urbanization in Changsha City
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 133-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech