Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (3) : 80-85     DOI: 10.6046/gtzyyg.2010.03.17
Technology Application |
Quality Assessment of MOD10A1 in the Tianshan Mountains Based on Multiple Statistical Sample Scales
CHEN Xiao-na 1,2, BAO An-ming 1, LIU Ping 1,2
1. Xinjiang Institute of Ecology and Geography, CAS, Urmqi  830011, China;
2. Graduate University of the Chinese Academy of Science, Beijing 100049, China
Download: PDF(761 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper,the MOD10A1 and Landsat-5 TM images were used as the basic data,and the snow information was extracted from Landsat-5 TM with SNOMAP developed by Hell et al.. Furthermore,a comparison between the MOD10A1 data and the classification map from Landsat-5 TM was made,and the quality accuracy of MOD10A1 was calculated at three statistical sample scales (50 pixel × 50 pixel,10 pixel × 10 pixel and 3 pixel ×3 pixel). The results show that, with the decrease of statistical sample scales,the statistical classification accuracy of snow in MOD10A1 images decreases,and the mean quantity accuracies at 50 pixel × 50 pixel,10 pixel × 10 pixel and 3 pixel ×3 pixel scale are 0.94,0.87 and 0.80 respectively. These data suggest that,limited by the spatial resolution,there is an efficient or optimum scale when MOD10A1 is applied. Meanwhile,the statistic results show that, with the decrease of the statistical classification accuracy,the stability of the MOD10A1 gradually becomes lower.

Keywords Tibet      The active tectonic zone      TM data      The identification of the image     
: 

TP 751.1

 
Issue Date: 20 September 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
CHEN Xiao-Na, BAO An-Ming, LIU Ping. Quality Assessment of MOD10A1 in the Tianshan Mountains Based on Multiple Statistical Sample Scales[J]. REMOTE SENSING FOR LAND & RESOURCES,2010, 22(3): 80-85.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.03.17     OR     https://www.gtzyyg.com/EN/Y2010/V22/I3/80

[1]Hall D K,Riggs G A,Salomonson V V,et al.Algorithm Theoretical Basis  Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms [EB/OL]. (2001-09). http:// modis-snow-ice.gsfc.nasa.gov/at bd01. html.

[2]Hall D K,Riggs G A,Salomonson V V,et al.MODIS Snow-Cover Products [J].Remote Sensing of Environment,2002(83):181-194.

[3]Songweon L,Andrew G K,Thomas M O. A Comparison of MODIS and NOHRSC Snow Cover Products for Simulating Streamflow Using the Snowmelt Runoff Model[J].Hydrological Processes,2005(19):2951-2972.

[4]蒋熹. 冰雪反照率研究进展[J]. 冰川冻土,2006,28(5):728-738.

[5]魏文寿,秦大河,刘明哲. 中国西北地区季节性积雪的性质与结构[J]. 干旱区地理,2001,24(4):310-313.

[6]黄晓东,张学通,李霞,等.北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J].冰川冻土,2007,29(5):722-729.

[7]仇家琪,孙希华. 天山积雪初步研究[J].干旱区地理,1992,15(3):9-21.

[8]仇家琪,马虹. 天山积雪遥感监测结果初议[J].冰川冻土,1996,18(增刊):359-368.

[9]Hall D K,Riggs G A,Salomonson V V.Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data[J].Remote Sensing of Environment,1995(54):127-140.

[10]Morisette J T,Justice C O,Privette J L. MODIS Land Team Validation Update for Terra and Aqua [EB/OL]. (2000-12-21).http://eospso.gsfc.nasa.gov/ftp_docs/MODLAND_ valupdate_Dec00.pdf.

[11]吴健平,杨星卫.遥感数据分类结果的精度分析[J].遥感技术与应用,1995,10(1):17-24.

[12]郝晓华,王建,李弘毅. MODIS雪盖制图中NDSI阈值的检验——以祁连山中部山区为例[J].冰川冻土,2008,30(1):133-138.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] MIN Wenbin, PEN Jun, Li Shiying. The evaluation of FY-3C snow products in the Tibetan Plateau[J]. Remote Sensing for Land & Resources, 2021, 33(1): 145-151.
[3] Liqiang TONG, Lixin PEI, Jienan TU, Zhaocheng GUO, Jiangkuan YU, Jinghui FAN, Dandan LI. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land & Resources, 2020, 32(2): 11-18.
[4] Haiqing WANG, Jianting HAO, Li LI, Na AN, Wenjia XU, Yaqiu YIN. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(1): 115-119.
[5] Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM[J]. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
[6] Junnan XIONG, Wei LI, Zhiqi LIU, Weiming CHENG, Chunkun FAN, Jin LI. Research on downscaling of TRMM data in the Tibetan Plateau based on GWR model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 88-95.
[7] Haiqing WANG, Li LI, Ling CHEN, Wenjia XU, Jinzhong YANG, Qiong LIU. An analysis of mining intensity about metal mines based on investigation of tailing reservoirs in Tibet[J]. Remote Sensing for Land & Resources, 2019, 31(2): 218-223.
[8] Binren XU, Yuanyuan WEI. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(3): 181-188.
[9] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[10] Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
[11] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[12] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
[13] YAN Yunpeng, LIU Gang, LIU Jianyu, HAN Cong, ZHAO Zixian. Snow cover remote sensing monitoring in the west of Ngari area in northern Tibet from 2013 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 185-190.
[14] LU Shanlong, XIAO Gaohuai, JIA Li, ZHANG Wei, LUO Haijing. Extraction of the spatial-temporal lake water surface dataset in the Tibetan Plateau over the past 10 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 181-187.
[15] BAI Shuying, WU Qi, SHI Jianqiao, GU Haimin. Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 171-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech