Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 116-121     DOI: 10.6046/gtzyyg.2017.01.18
Technology Application |
Spatial clustering analysis of atmospheric precipitable water in the Tianshan Mountains
CHENG Hongxia1,2, LIANG Fengchao2, LI Shuai2, LIN Yuejiang3
1. Institute of Desert Meteorology, CMA, Urumqi 830002, China;
2. Xinjiang Climate Center, Urumqi 830002, China;
3. Xinjiang Branch of CMA Training Centre, Urumqi 830013, China
Download: PDF(1430 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the MODIS near infrared atmospheric precipitable water products with the resolution of 1km×1km and elevation data, using GIS spatial analyst and mathematical statistics method, this paper analyzed the spatial distribution and spatial correlation of atmospheric precipitable water in the Tianshan mountains during the period from 2003 to 2013.The results show that the atmospheric precipitable water in western mountain area is higher than the eastern mountain area. The atmospheric precipitable water in the Tianshan mountains has significantly positively correlated and its global spatial autocorrelation index is 0.899 8. The atmospheric precipitable water in the Tianshan mountains tends to be spatially clustered. The cluster of high values (HH) accounts for 35.94% of the total and are mostly distributed in elevation 2 000 m in surrounding area of Tianshan mountains. The cluster of low values (LL) accounts for 38.79% of the total and concentrated in the central and eastern region of the Tianshan mountains with elevation 3 000 m. The spatial outliers in which a low value is surrounded primarily by high values (LH) are scattered in the Tianshan Mountain. The spatial correlation coefficient between atmospheric precipitable water and elevation is -0.831 3. Elevation is the main reason for the distribution and difference of spatial clustering pattern.

Keywords nonlinear      fractal      change point analysis      remote sensing alteration anomalies      Xinjinchang and Laojinchang     
:  TP79  
Issue Date: 23 January 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Haihui
WANG Yilin
REN Guangli
YANG Junlu
LI Jianqiang
YANG Min
Cite this article:   
HAN Haihui,WANG Yilin,REN Guangli, et al. Spatial clustering analysis of atmospheric precipitable water in the Tianshan Mountains[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 116-121.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.01.18     OR     https://www.gtzyyg.com/EN/Y2017/V29/I1/116

[1] 刘三超,柳钦火,高懋芳.地基多波段遥感大气可降水量研究[J].国土资源遥感,2006,18(4):6-9.doi:10.6046/gtzyyg.2006.04.02. Liu S C,Liu Q H,Gao M F.Multi-spectral optical remote sensing of precipitable water[J].Remote Sensing for Land and Resources,2006,18(4):6-9.doi:10.6046/gtzyyg.2006.04.02.
[2] 刘丹,邱新法,史岚,等.基于NCEP资料的我国大气可降水量的计算及其时空分布[J].南京信息工程大学学报:自然科学版,2013,5(2):113-119. Liu D,Qiu X F,Shi L,et al.Estimation of atmospheric precipitable water in China with NCEP data and its spatio-temporal distribution[J].Journal of Nanjing University of Information Science and Technology:Natural Science Edition,2013,5(2):113-119.
[3] 李霞,张广兴.天山可降水量和降水转化率的研究[J].中国沙漠,2003,23(5):509-513. Li X,Zhang G X.Research on precipitable water and precipitation conversion efficiency around Tianshan Mountain area[J].Journal of Desert Research,2003,23(5):509-513.
[4] 魏浩翰,何秀凤.利用区域GPS观测网探测夏季降雨中大气可降水量[J].河海大学学报:自然科学版,2011,39(4):454-457. Wei H H,He X F.Detection of precipitable water vapor during summer rainfall using regional GPS network[J].Journal of Hohai University:Natural Sciences,2011,39(4):454-457.
[5] 史玉光,孙照渤.新疆大气可降水量的气候特征及其变化[J].中国沙漠,2008,28(3):519-525. Shi Y G,Sun Z B.Climate characteristics of atmospheric precipitable water over Xinjiang and its variation[J].Journal of Desert Research,2008,28(3):519-525.
[6] Sobrino J A,Kharraz J E,Li Z L.Surface temperature and water vapour retrieval from MODIS data[J].International Journal of Remote Sensing,2003,24(24):5161-5182.
[7] 赵传成,丁永建,叶柏生,等.天山山区降水量的空间分布及其估算方法[J].水科学进展,2011,22(3):315-322. Zhao C C,Ding Y J,Ye B S,et al.Spatial distribution of precipitation in Tianshan Mountains and its estimation[J].Advances in Water Science,2011,22(3):315-322.
[8] 李成才,毛节泰.GPS地基遥感大气水汽总量分析[J].应用气象学报,1998,9(4):470-477. Li C C,Mao J T.Analysis for remote sensing of atmospheric precipitable water using ground-based GPS receiver[J].Quarterly Journal of Applied Meteorology,1998,9(4):470-477.
[9] 许民,叶柏生,赵求东,等.利用GRACE重力卫星监测新疆天山山区水储量时空变化[J].干旱区研究,2013,30(3):404-411. Xu M,Ye B S,Zhao Q D,et al.Spatiotemporal change of water reserves in the Tianshan Mountains, Xinjiang based on GRACE[J].Arid Zone Research,2013,30(3):404-411.
[10] 张正勇,刘琳,唐湘玲.1960-2010年中国天山山区气候变化区域差异及突变特征[J]. 地理科学进展,2012,31(11):1475-1484. Zhang Z Y,Liu L,Tang X L.The regional difference and abrupt events of climatic change in Tianshan Mountains during 1960-2010[J].Progress in Geography,2012,31(11):1475-1484.
[11] 杨青,史玉光,袁玉江,等.基于DEM的天山山区气温和降水序列推算方法研究[J].冰川冻土,2006,28(3):337-342. Yang Q,Shi Y G,Yuan Y J,et al.Temperature and precipitation series in the Tianshan Mountains calculated based on DEM[J].Journal of Glaciology and Geocryology,2006,28(3):337-342.
[12] 孟宪红,吕世华,张堂堂.MODIS近红外水汽产品的检验、改进及初步应用——以黑河流域金塔绿洲为例[J].红外与毫米波学报,2007,26(2):107-111. Meng X H,Lyu S H,Zhang T T.Testing, improvement and application of MODIS near infrared water vapor products:Taking Jinta oasis in Heihe river basin as a case study[J].Journal of Infrared and Millimeter Waves,2007,26(2):107-111.
[13] 林锦耀,黎夏.基于空间自相关的东莞市主体功能区划分[J].地理研究,2014,33(2):349-357. Lin J Y,Li X.MFOZ planning of Dongguan based on spatial autocorrelation by using genetic algorithms[J].Geographical Research,2014,33(2):349-357.
[14] 朱瑜馨,张锦宗,聂芹.山东省人口密度分布模式的GIS空间分析[J].国土资源遥感,2011,23(4):147-150.doi:10.6046/gtzyyg.2011.04.27. Zhu Y X,Zhang J Z,Nie Q.A study of the population spatial distribution model based on spatial statistics in Shandong Province[J].Remote Sensing for Land and Resources,2011,23(4):147-150.doi:10.6046/gtzyyg.2011.04.27.
[15] 梁宏,刘晶淼,李世奎.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J]. 自然资源学报,2006,21(4):526-534. Liang H,Liu J M,Li S K.Analysis of precipitable water vapor source distribution and its seasonal variation characteristics over Tibetan plateau and its surroundings[J].Journal of Natural Resources,2006,21(4):526-534.

[1] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[2] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[3] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[4] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[5] Ting WANG, Jun PAN, Lijun JIANG, Lixin XING, Yifan YU, Pengju WANG. Topographic variable analysis and lithologic classification based on DEM[J]. Remote Sensing for Land & Resources, 2018, 30(2): 231-237.
[6] HAN Haihui, WANG Yilin, YANG Min, REN Guangli, YANG Junlu, LI Jianqiang, GAO Ting. Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 137-142.
[7] HAN Haihui, WANG Yilin, REN Guangli, YANG Junlu, LI Jianqiang, YANG Min. Nonlinear analysis method for remote sensing alteration anomalies: A case study of Xinjinchang and Laojinchang in Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 43-49.
[8] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
[9] XU Jianhui, SHU Hong, LI Yang. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
[10] LIU Lei, ZANG Shuying, SHAO Tiantian, WEI Jinhong, SONG Kaishan. Characterization of lake morphology in China using remote sensing and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 92-98.
[11] ZHOU Lintao, YANG Guofan, ZHAO Fuqiang, DU Juan. Water information extraction from remote sensing image using EMD and fraction method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 41-45.
[12] GE Daqing, YIN Yueping, WANG Yan, ZHANG Ling, GUO Xiaofang, WANG Yi. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique:A case study of Dezhou, Shandong[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 103-109.
[13] JIA Chunyang, LI Weihua, LI Xiaochun. High-resolution remote sensing image segmentation based on weight adaptive fractal net evolution approach[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 22-25.
[14] QIAN Jianping, ZHANG Yuan, ZHAO Xiaoxing, ZHAO Shaojie, LI Chengli. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 109-117.
[15] YUAN Xiaoping, LIU Shaofeng, TIAN Guizhong, CHEN Li, YU Jing. Analysis of the fractal dimension in the Golmud River basin based on DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 111-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech