Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (2) : 27-32     DOI: 10.6046/gtzyyg.2014.02.05
Technology and Methodology |
Soil moisture inversion in the vegetation-covered area:A case study of Beijing City
JIANG Jinbao1, ZHANG Ling1, CUI Ximin1, CAI Qingkong1, Sun Hao2
1. College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China;
2. College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China
Download: PDF(3355 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Taking Beijing as the study area, the authors developed a method of soil moisture inversion by using Radar data and optical remote sensing images in the vegetation-covered area. Firstly, NDWI was extracted by using homochronous optical images, and then water-cloud model was used to eliminate the contribution of backscattering coefficients caused by the vegetation. Secondly, HH and HV backscattering coefficients were employed to construct the soil moisture inversion model in consideration of surface roughness based on backscattering database built by AIEM model and Oh model. Then the simulating data were used to validate the accuracy of this model. The result shows that the RMSE and relative error of HH is 0.044 and 15.5%, and the RMSE and relative error of HV is 0.057 and 20.3% respectively. It is proved that the result of using HH backscattering coefficient is much better than that of using HH backscattering coefficient.

Keywords lunar water ice      Radar      miniature radio frequency(Mini-RF)     
:  TP79  
Issue Date: 28 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Donghua
ZHANG Chunhua
LIU Rui
JIANG Yanguang
Cite this article:   
ZHANG Donghua,ZHANG Chunhua,LIU Rui, et al. Soil moisture inversion in the vegetation-covered area:A case study of Beijing City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 27-32.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.02.05     OR     https://www.gtzyyg.com/EN/Y2014/V26/I2/27

[1] 刘伟,施建成,王建明.极化分解技术在估算植被覆盖地区土壤水分变化中的应用[J].遥感信息,2005(4),3-6. Liu W,Shi J C,Wang J M.Applying the decomposition technique in vegetated surface to estimate soil moisture by multitemporal measurements[J].Remote Sensing Information,2005(4),3-6.

[2] 周鹏,丁建丽,高婷婷.C波段多极化SAR反演土壤水分研究[J]新疆农业科学,2010,47(7):1416-1420. Zhou P,Ding J L,Gao T T.A study on soil moisture retrieval by C-band multi-polarization SAR[J].Xinjiang Agricultural Sciences,2010,47(7):1416-1420.

[3] 鲍艳松,刘良云,王纪华.综合利用光学、微波遥感数据反演土壤湿度研究[J].北京师范大学学报:自然科学版,2007,43(3):228-233. Bao Y S,Liu L Y,Wang J H.Soil moisture estimation based on optical and microwave remote sensing data[J].Journal of Beijing Normal University:Natural Science,2007,43(3):228-233.

[4] Dabrowska-zielinska K,lnoue Y,Kowalik W,et al.Inferring the effect of plant and soil variables on C and L band SAR backscatter over agricultural fields,based on model analysis[J].Advances in Space Research,2007,39(1):139-148.

[5] Notarnicola C,Angiulli M,Posa F.Use of Radar and optical remotely sensed data for soil moisture retrieval over vegetated areas[J].IEEE Trans Geosci Remote Sensing,2006,44(4):925-935.

[6] Ulaby F,Sarabandi K,Donald K M,et al.Michigan microwave canopy scattering model[J].International Journal of Remote Sensing,1990,11(7):1223-1253.

[7] Attema E P W.Vegetation modeled as a water cloud[J].Radio Science,1978,13(2):357-364.

[8] De Roger R D,Yang D,Ulaby F T,et al.A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J].IEEE Transactions on Geoscience and Remote Sensing.2001,39(4):864-872.

[9] Bindlish R,Barros A P.Parameterization of vegetation backscatter in Radar-based soil moisture estimation[J].Remote Sensing of Environment.2001,76(1),130-137.

[10] Taconet O,Vidal-madjar D,Emblanch C,et al.Taking into account vegetation effects to estimate soil moisture from C-band Radar measurements[J],Remote Sensing of Environment.1996,56(1),52-56.

[11] 余凡,赵英时.ASAR和TM数据协同反演植被覆盖地表土壤水分的新方法[J].中国科学:地球科学,2001,41(4):532-540. Yu F,Zhao Y S.The new way of soil moisture inversion in vegetated areas using ASAR and TM data[J].Science China:Geoscience,2001,41(4):532-540.

[12] 张友静,王军战,鲍艳松.多源遥感数据反演土壤水分方法[J].水科学进展,2010,21(2):222-228. Zhang Y J,Wang J Z,Bao Y S.Soil moisture retrieval from multi-resource remotely sensed images over a wheat area[J].Advances in Water Science,2010,21(2):222-228.

[13] Shimada M,Isoguchi O,Tadono T,et al.PALSAR radiometric and geometric calibration[J].Geoscience and Remote Sensing.2009,47(12):3915-3932.

[14] 周鹏,丁建丽,王飞,等.植被覆盖地表土壤水分遥感反演[J].遥感学报,2010,14(5):966-973. Zhou P,Ding J L,Wang F,et al.Retrieval methods of soil water content in vegetation covering areas based on multi-source remote sensing data[J].Journal of Remote Sensing,2010,14(5):966-973.

[15] 刘万侠,刘旭拢,王娟,等.华南农作物覆盖区土壤水分ENVISAT-ASAR与MODIS数据联合反演算法研究[J].干旱区农业研究,2008,26(3):39-43. Liu W X,Liu X L,Wang J,et al.Remote sensing retrieval of soil moisture using ENVISAT-ASAR and MODIS images in vegetated areas of Huanan[J].Agricultural Research in the Arid Areas,2008,26(3):39-43.

[16] Bindlish R,Barros A P.Parameterization of vegetation backscatter in Radar-based soil moisture estimation[J].Remote Sensing of Environment.2001,76(1):130-137.

[17] 刘小磊,覃志豪.NDWI与NDVI指数在区域干旱监测中的比较分析——以2003年江西夏季干旱为例[J].遥感技术与应用,2007,22(5):608-612. Liu X L,Qin Z H.Comparative analysis between NDWI and NDVI indices in regional drought monitoring[J].Remote Sensing Technology and Application,2007,22(5):608-612.

[18] Jackson T J,Chen D Y,Cosh M,et al.Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[J].Remote Sensing of Environment.2004,92(4):475-482.

[19] 曾远文,陈浮,雷少刚,等.基于雷达和光学影像监测土壤表层水分[J].江苏农业科学,2012,40(5):320-323. Zeng Y W,Chen F,Lei S G,et al.Soil moisture monitoring using Radar and optical data[J].Jiangsu Agricultural Sciences,2012,40(5):320-323.

[1] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[2] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[3] JIANG Shan, WANG Chun, SONG Hongli, LIU Yufeng. A study of crop planting type recognition based on SAR and optical remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 105-110.
[4] Guangyu ZHOU, Bangquan LIU, Dan ZHANG. Target recognition in SAR images based on variational mode decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(2): 33-39.
[5] Nianqin WANG, Dejing QIAO, Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
[6] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[7] Hongrui ZHENG, Zhigang XU, Le GAN, Ling CHEN, Jinzhong YANG, Peijun DU. Synthetic aperture Radar remote sensing technology in geological application: A review[J]. Remote Sensing for Land & Resources, 2018, 30(2): 12-20.
[8] XU Bin. Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 90-96.
[9] LIU Bin, GE Daqing, LI Man, ZHANG Ling, WANG Yan, GUO Xiaofang, ZHANG Xiaobo. Ground-based interferometric synthetic aperture radar and its applications[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 1-6.
[10] QI Shuai, ZHANG Yonghong, WANG Huiqin. Analysis of fire disturbed forests scattering characteristics using polarimetric SAR image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 48-53.
[11] HE Haiyan, LING Feilong, WANG Xiaoqin, LIANG Zhifeng. Estimation of fractional vegetation coverage in water and soil loss area based on Radar vegetation index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 165-170.
[12] WAN Jie, LIAO Jingjuan, XU Tao, SHEN Guozhuang. Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: A case study in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 100-105.
[13] CHENG Chen, FU Wenxue, HU Zhaoling, LI Xinwu. Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 146-152.
[14] LIU Huiying, GUO Huadong, ZHANG Lu. Approach to the classification of sea ice in Liaodong Bay using HJ-1C SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 125-129.
[15] WANG Xingling, HU Deyong, TANG Hong, SHU Yang. Extraction of landslide information from airborne polarimetric SAR images based on Bayes decision theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech