Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 165-170     DOI: 10.6046/gtzyyg.2015.04.25
|
Estimation of fractional vegetation coverage in water and soil loss area based on Radar vegetation index
HE Haiyan1, LING Feilong1, WANG Xiaoqin1, LIANG Zhifeng1,2
1. Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Fuzhou university Fuzhou 350002, China;
2. Aerors Inc. Xi'an 710000, China
Download: PDF(6050 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Fractional vegetation coverage (FVC) is one of the important indicators for describing the extent of water and soil loss. Dimidiate pixel model assumes that a pixel value is only contributed by vegetation and non-vegetation. Fractional vegetation coverage is defined as the area ratio of vegetation. In this study, Radar vegetation index (RVI) was first derived from Radarsat-2 data by polarimetric decomposition. The FVC was estimated from RVI based on dimidiate pixel model. Then this model with RVI was applied to Hetian area in Changting county of Fujian Province. Finally, the authors verified the results with a reference FVC, which was calculated from the high resolution WorldView-2 image and ground-truth data by field work. The results correlate well to the reference data with R2 over 0.8. The result suggests that it is promising to use dimidiate pixel model with RVI to estimate FVC from Radarsat-2 polarimetric data. The method completely based on Radar data has solved the problem of the difficulty in obtaining data in Southern China and is also helpful to monitoring water and soil loss continuously.
Keywords remote sensing estimation      planting acreage      crop      image classification      accuracy     
:  TP79  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Huanxue
LI Qiangzi
WEN Ning
Du Xin
TAO Qingshan
TIAN Yichen
Cite this article:   
ZHANG Huanxue,LI Qiangzi,WEN Ning, et al. Estimation of fractional vegetation coverage in water and soil loss area based on Radar vegetation index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 165-170.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.25     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/165
[1] Gitelson A A, Kaufman Y J, Stark R, et al.Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment, 2002, 80(1):76-87.
[2] Purevdorj T, Tateishi R, Ishiyama T.Relationships between percent vegetation cover and vegetation indices[J].International Journal of Remote Sensing, 1998, 19(18):3519-3535.
[3] 哈德逊.土壤保持[M].北京:科学出版社, 1975:2-3. Hudson N W.Soil Conservation[M].Beijing:Science Press, 1975:2-3.
[4] 邹军, 张明礼, 杨浩.退耕还林(草)与水土保持若干问题的研究进展[J].土壤通报, 2012, 43(2):506-512. Zhou J, Zhang M L, Yang H.Grain for green vegetation of forestry and grass water and soil conversation[J].Chinese Journal of Soil Science, 2012, 43(2):506-512.
[5] 贾坤, 姚云军, 魏香琴, 等.植被覆盖度遥感估算研究进展[J].地球科学进展, 2013, 28(7):774-782. Jia K, Yao Y J, Wei X Q, et al.A review on fractional vegetation cover estimation using remote sensing[J].Advances in Earth Science, 2013, 28(7):774-782.
[6] 江洪, 王钦敏, 汪小钦.福建省长汀县植被覆盖度遥感动态监测研究[J].自然资源学报, 2006, 21(1):126-132, 166. Jiang H, Wang Q M, Wang X Q.Dynamic monitoring of vegetation fraction by remote sensing in Changting county of Fujian Province[J].Journal of Natural Resources, 2006, 21(1):126-132, 166.
[7] 李苗苗, 吴炳方, 颜长珍, 等.密云水库上游植被覆盖度的遥感估算[J].资源科学, 2004, 26(4):153-159. Li M M, Wu B F, Yan C Z, et al.Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing[J].Resources Science, 2004, 26(4):153-159.
[8] 吴昌广, 周志翔, 肖文发, 等.基于MODIS NDVI的三峡库区植被覆盖度动态监测[J].林业科学, 2012, 48(1):22-28. Wu C G, Zhou Z X, Xiao W F, et al.Dynamic monitoring of vegetation coverage in Three Gorges Reservoir area based on MODIS NDVI[J].Scientia Silvae Sinicae, 2012, 48(1):22-28.
[9] Capodici F, Durso G, Maltese A.Investigating the relationship between X-band SAR data from COSMO-SkyMed satellite and NDVI for LAI detection[J].Remote Sensing, 2013, 5(3):1389-1404.
[10] 徐茂松, 张风丽, 夏忠胜, 等.植被雷达遥感方法与应用[M].北京:科学出版社, 2012. Xu M S, Zhang F L, Xia Z S.The Methods and Application of Vegetaion Radar[M].Beijing:Science Press, 2012.
[11] 王庆, 曾琪明, 廖静娟.基于极化分解的极化特征参数提取与应用[J].国土资源遥感, 2012, 24(3):103-110.doi:10.6046/gtzyyg.2012.03.19. Wang Q, Zeng Q M, Liao J J.Extraction and application of polarimetric characteristic parameters based on polarimetric decomposition[J].Remote Sensing for Land and Resources, 2012, 24(3):103-110.doi:10.6046/gtzyyg.2012.03.19.
[12] Van Zyl J J.An overview of the analysis of multi-frequency polarimetric SAR data[C]//6th European Conference on Synthetic Aperture Radar.Dresden, Germany:[s.n.], 2006:16-18.
[13] Ling F, Li Z, Chen E, et al.Comparison of ALOS PALSAR RVI and Landsat TM NDVI for forest area mapping[C]//2nd Asian-Pacific Conference on Synthetic Aperture Radar.Xi'an, China:IEEE, 2009:132-135.
[14] Settle J J, Drake N A.Linear mixing and the estimation of ground cover proportions[J].International Journal of Remote Sensing, 1993, 14(6):1159-1177.
[15] Leprieur C, Verstraete M M, Pinty B.Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data[J].Remote Sensing Reviews, 1994, 10(4):265-284.
[16] Gutman G, Ignatov A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sensing, 1998, 19(8):1533-1543.
[17] Qi J, Marsett R C, Moran M S, et al.Spatial and temporal dynamics of vegetation in the San Pedro river basin area[J].Agricultural and Forest Meteorology, 2000, 105(1/3):55-68.
[18] 牛宝茹, 刘俊蓉, 王政伟, 等.干旱半干旱地区植被覆盖度遥感信息提取研究[J].武汉大学学报:信息科学版, 2005, 30(1):27-30. Niu B R, Liu J R, Wang Z W, et al.Remote sensing information extraction based on vegetation fraction in drought and half-drought area[J].Geomatics and Information Science of Wuhan University, 2005, 30(1):27-30.
[19] 李苗苗.植被覆盖度的遥感估算方法研究[D].北京:中国科学院遥感应用研究所, 2003. Li M M.The Method of Vegetation Fraction Estimation by Remote Sensing[D].Beijing:Institute of Remote Sensing Application, Chinese Academy of Sciences, 2003.
[20] 徐涵秋, 何慧, 黄绍霖.福建省长汀县河田水土流失区植被覆盖度变化及其热环境效应[J]. 生态学报, 2013, 33(10):2954- 2963. Xu H Q, He H, Huang S L.Analysis of fractional vegetation cover change and its impact on thermal environment in the hetian basinal area of county Changting, Fujian Province, China[J].Acta Ecologica Sinica, 2013, 33(10):2954-2963.
[21] Lee J S, Pottier E. Polarimetric Radar Imaging:From Basics to Applications[M].New York:Taylor & Francis, 2009:254-257.
[22] Cloude S R, Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518.
[23] Van Zyl J J, Zebker H A, Elachi C.Imaging Radar polarization signatures:Theory and observation[J].Radio Science, 1987, 22(4):529-543.
[24] Carlson T N, Ripley D A.On the relation between NDVI, fractional vegetation cover, and leaf area index[J].Remote Sensing of Environment, 1997, 62(3):241-252.
[25] Rundquist B C.The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie[J].Remote Sensing of Environment, 2002, 81(1):129-135.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[3] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[4] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[5] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[6] JIANG Shan, WANG Chun, SONG Hongli, LIU Yufeng. A study of crop planting type recognition based on SAR and optical remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 105-110.
[7] PENG Xiaowei, ZHANG Aijun, WANG Nan, ZHAO Li. Application of hyperspectral imaging technology in crop seeds[J]. Remote Sensing for Land & Resources, 2020, 32(4): 23-32.
[8] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[9] CAI Zhiling, WENG Qian, YE Shaozhen, JIAN Cairen. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land & Resources, 2020, 32(3): 80-89.
[10] Pengyan HUANG, Lijing BU, Yongliang FAN. Integrating visual features in polarimetric SAR image classification[J]. Remote Sensing for Land & Resources, 2020, 32(2): 88-93.
[11] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[12] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[13] Dongsheng XIAO, Song YANG. A review of population spatial distribution based on nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 10-19.
[14] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[15] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech