Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 249-256     DOI: 10.6046/zrzyyg.2021086
|
An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine
YAO Jinxi1(), ZHANG Zhi1(), ZHANG Kun2
1. Institute of Geophysics and Geomatics, China University of Geosciences(Wuhan), Wuhan 430074, China
2. Key Laboratory of the Northern Qinghai-Tibet Plateau Geological Processes and Mineral Resources, Xining 810300,China
Download: PDF(4333 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Google Earth Engine enables some limitations in the remote sensing monitoring of vegetation to be overcome, including difficult data acquisition, large local storage capacity, and low processing efficiency. Using GEE, the data of satellites Landsat and MODIS (spatial resolution: 30 m and 250 m, respectively), and temperature and precipitation data, this study investigated the spatio-temporal change trends and sustainability of the vegetation in the Nuomuhong alluvial fan in Qinghai Province during 2000—2017. Moreover, this study analyzed the relationships of vegetation between wolfberry plantations and salinized areas on the alluvial fans of different eras and the future changes of the relationships. The results are as follows: ① The average annual maximum synthetic normalized difference vegetation index (NDVI) increased from 0.029 to 0.054 during 2000—2017, with an increased amplitude of 0.025. The average annual enhanced vegetation index (EVI) increased from 0.633 to 0.771 during these years, with an increased amplitude of 0.138. The multiyear average maximum EVI showed that EVI peaks occurred from May to October each year. ② A correlation analysis and a partial correlation analysis were conducted between the average maximum EVI and the temperature and precipitation data. According to the analytical results, the correlation coefficient between the average maximum EVI and temperature was 0.839, indicating a strong positive correlation. Meanwhile, the correlation coefficient between the average maximum EVI and precipitation amount was 0.457, indicating a weak positive correlation. ③ Over 18 years, the vegetation in wolfberry plantations was rapidly improved, while the vegetation in the salinized area degenerated. ④ The future changes in the vegetation in wolfberry planting areas and salinized areas will have strong sustainability. The vegetation growth in wolfberry planting areas will continuously restrict the vegetation in the salinized area to a certain extent in a period in the future.

Keywords Nuomuhong alluvial fan      vegetation change      vegetation index      Hurst index      Google Earth Engine     
ZTFLH:  TP79  
Corresponding Authors: ZHANG Zhi     E-mail: 1812283850@qq.com;171560655@qq.com
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinxi YAO
Zhi ZHANG
Kun ZHANG
Cite this article:   
Jinxi YAO,Zhi ZHANG,Kun ZHANG. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021086     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/249
Fig.1  Schematic diagram of the location of Nuomuhong alluvial fans
Fig.2  Technical route
Fig.3  Vegetation coverage of the study area in 2000 and 2017
Fig.4  Inter-annual changes of vegetation in study area from 2000 to 2017
Fig.5  Inter-monthly changes of vegetation in study area from 2000 to 2017
Fig.6  Interannual changes of vegetation coverage in the wolfberry planting area and salinization area
Fig.7  The k value of NDVI change in Nuomuhong alluvial fan wolfberry planting area and salinization area from 2000 to 2017
Fig.8  Hurst exponent distribution in the area of study area
Fig.9  Hurst index distribution of wolfberry planting area and salinization area
[1] 张学珍, 郑景云, 何凡能, 等. 1982—2006年中国东部秋季植被覆盖变化过程的区域差异[J]. 自然资源学报, 2013, 28(1):28-37.
[1] Zhang X Z, Zheng J Y, He F N, et al. Spatial differences of variations in autumn fractional vegetation coverage in Eastern China during 1982—2006[J]. Journal of Natural Resources, 2013, 28(1):28-37.
[2] Wang X, Hua T, Lang L, et al. Spatial differences of aeolian desertification responses to climate in arid Asia[J]. Global and Planetary Change, 2017, 148:22-28.
doi: 10.1016/j.gloplacha.2016.11.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0921818116303411
[3] Yang L M, Bruce K W, Larry L T, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. Northern and Central Great Plains[J]. Remote Sensing of Environment, 1998, 65(1):25-37.
doi: 10.1016/S0034-4257(98)00012-1 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425798000121
[4] Yang W, Yang Z, Merchant J W. An assessment of AVHRR NDVI eco-climatological relations in Nebraska,USA[J]. International Journal of Remote Sensing, 1997, 18(10):2161-2180.
doi: 10.1080/014311697217819 url: https://www.tandfonline.com/doi/full/10.1080/014311697217819
[5] 陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019, 49(11):1659-1696.
[5] Chen F H, Fu B J, Xia J, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Science China:Earth Sciences, 2019, 49(11):1659-1696.
[6] 徐浩杰, 杨太保. 柴达木盆地植被生长时空变化特征及其对气候要素的响应[J]. 自然资源学报, 2014, 29(3):398-407.
[6] Xu H J, Yang T B. Spatial-temporal variations of vegetation activities and its responses to climatic factors in the Qaidam Basin[J]. Journal of Natural Resources, 2014, 29(3):398-407.
[7] 王林林, 刘普幸, 王允. 近14年来柴达木盆地NDVI时空变化及其影响因素[J]. 生态学杂志, 2015, 34(6):1713-1722.
[7] Wang L L, Liu P X, Wang Y. Spatial and temporal variations of NDVI and its influencing factors in Qaidam Basin in the last 14 years[J]. Chinese Journal of Ecology, 2015, 34(6):1713-1722.
[8] 张斯琦, 陈辉, 宋家明, 等. 2000—2015年柴达木盆地植被覆盖度时空变化及其与环境因子的关系[J]. 干旱区地理, 2019, 42(5):1124-1131.
[8] Zhang S Q, Chen H, Song J M, et al. Spatial and temporal variation of fractional vegetation cover and its relationship with environmental factors in the Qaidam Basin during 2000—2015[J]. Arid Land Geography, 2019, 42(5):1124-1131.
[9] 李艳丽, 杨太保, 曾彪. 基于MODIS数据的柴达木盆地南缘绿洲土地覆盖动态变化研究[J]. 中国沙漠, 2011, 31(1):34-41.
[9] Li Y L, Yang T B, Zeng B. Land cover change of southern fringe oasis in the Qaidam Basin from 2000 to 2009 based on MODIS data[J]. Journal of Desert Research, 2011, 31(1):34-41.
[10] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geosptial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
doi: 10.1016/j.rse.2017.06.031 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717302900
[11] Goldblatt R, You W, Hanson G, et al. Detection the boundaries of urban areas in India:A dataset for pixel-based image classification in Google Earth Engine[J]. Remote Sensing, 2016, 8(8):634.
doi: 10.3390/rs8080634 url: http://www.mdpi.com/2072-4292/8/8/634
[12] Dong J, Xiao X, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat8 image,phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185:142-154.
doi: 10.1016/j.rse.2016.02.016 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571630044X
[13] Fu Y, Chen H, Niu H, et al. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28(4):400-414.
doi: 10.1007/s11442-018-1480-2 url: https://doi.org/10.1007/s11442-018-1480-2
[14] 孙雷刚, 刘剑锋, 徐全洪. 河北坝上地区植被覆盖变化遥感时空分析[J]. 自然资源遥感, 2014, 26(1):167-172.doi: 10.6046/gtzyyg.2014.01.28.
doi: 10.6046/gtzyyg.2014.01.28
[14] Sun L G, Liu J F, Xu Q H. Remote sensing based temporal and spatial analysis of vegetation over changes in Bashang area of Hebei Province[J]. Remote Sensing for Land and Resources, 2014, 26(1):167-172.doi: 10.6046/gtzyyg.2014.01.28.
doi: 10.6046/gtzyyg.2014.01.28
[15] 徐嘉昕, 方世波, 张廷斌, 等. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 自然资源遥感, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
[15] Xu J X, Fang S B, Zhang T B, et al. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land and Resources, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
[16] 蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13(6):1170-1186.
[16] Cai B F, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6):1170-1186.
[17] Hurst H E. Long term storage capacity of reservoirs[J]. American Society of Civil Engineers Transactions, 1951, 116(776):770-808.
doi: 10.1061/TACEAT.0006518 url: http://ascelibrary.org/doi/10.1061/TACEAT.0006518
[18] Granero M A S, Segovia J E T, Pérez J G. Some comments on Hurst exponent and the long memory processes on capital markets[J]. Physica A:Statistical Mechanics and Its Applications, 2008, 387(22):5543-5551.
doi: 10.1016/j.physa.2008.05.053 url: https://linkinghub.elsevier.com/retrieve/pii/S0378437108004895
[19] 刘明霞, 刘友存, 陈明, 等. 2000—2018赣江上游植被覆盖度时空演化及其对气候变化的响应[J]. 水土保持通报, 2020, 40(5):284-290.
[19] Liu M X, Liu Y C, Chen M, et al. Spatiotemporal evolution of vegetation coverage and its response to climate change in upper reaches of Ganjiang River basin during 2000—2018[J]. Bulletin of Soil and Water Conservation, 2020, 40(5):284-290.
[20] 徐浩杰, 杨太保. 1981—2010年柴达木盆地气候要素变化特征及湖泊和植被响应[J]. 地理科学进展, 2013, 32(6):868-875.
doi: 10.11820/dlkxjz.2013.06.003
[20] Xu H J, Yang T B. Climate factors change and its impact on lake area and vegetation growth in the Qaidam Basin during 1981—2010[J]. Progress in Geography, 2013, 32(6):868-875.
[21] 梁守真, 禹定峰, 王猛, 等. 应用遥感时序数据研究植被变化与气候因子的关系——以环渤海地区为例[J]. 自然资源遥感, 2015, 27(3):114-121.doi: 10.6046/gtzyyg.2015.03.19.
doi: 10.6046/gtzyyg.2015.03.19
[21] Liang S Z, Yu D F, Wang M, et al. Application of remote sensing time-series data to investigate the relationship between vegetation change and climatic factors:A case study of Circum-Bohai Sea area[J]. Remote Sensing for Land and Resources, 2015, 27(3):114-121.doi: 10.6046/gtzyyg.2015.03.19.
doi: 10.6046/gtzyyg.2015.03.19
[22] 张华, 安徽敏. 基于GEE的1987—2019年民勤绿洲NDVI变化特征及趋势分析[J]. 中国沙漠, 2021, 41(1):28-36.
[22] Zhang H, An H M. Analysis of NDVI variation characteristics and trend of Minqin Oasis from 1987 to 2019 based on GEE[J]. Journal of Desert Research, 2021, 41(1):28-36.
[23] 常纯, 王心源, 杨瑞霞, 等. 基于DEM-NDVI的高山植被带定量刻划[J]. 地理研究, 2015, 34(11):2113-2123.
doi: 10.11821/dlyj201511010
[23] Chang C, Wang X Y, Yang R X, et al. A quantitative characterization method for alpine vegetation zone based on DEM and NDVI[J]. Geographical Research, 2015, 34(11):2113-2123.
[1] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[2] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[3] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[4] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[5] ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
[6] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[7] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[8] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
[9] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[10] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[11] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[12] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[13] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[14] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[15] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech