Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 122-130     DOI: 10.6046/gtzyyg.2015.04.19
|
Assessment of applying ZY-3 DEM data to quantitative study of active structures
SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang
Institute of Crustal Dynamics, CEA, Beijing 100085, China
Download: PDF(10356 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to evaluate the data usability of ZY-3 in geology, the authors chose piedmont fault of the Daqing Mountain as the study area, and assessed the effect of applying the DEM(digital elevation model)of ZY-3 to quantitative study of active structure on the basis of the on-orbit testing work. Consulting 1: 50 000 DEM and high-precision GPS data, the authors assessed the DEM of ZY-3 which has 5m resolution by the check-point method and profile method, in comparison with the GDEM of ASTER which has 30 m resolution. Experimental results show that the elevation accuracy of ZY-3 DEM is slightly better than that of ASTER GDEM,and ZY-3 DEM is affected by the terrain factors more significantly than ASTER GDEM. Statistic analysis and micro-topographic research were carried out on piedmont fault of the Daqing Mountain, and the results obtained show that mountain areas account for about 92% of this region, and most of them are low or medium mountains. This region has four planation surfaces and a piedmont deposition platform, the closer to the last part of the eastern fault, the weaker the activity is. Fractures are distributed in linear form and their activities are mainly in tension with left-level slip. The high resolution optical images, multispectral resolution images and DEM can be widely used in quantitative study of active structures.
Keywords HY-1B/COCTS      stripe noise      waters      moment matching      quality evaluation     
:  TP79  
  P2  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GONG Shaoqi
ZHANG Xiru
WANG Shaofeng
SUN Deyong
LU Yicen
GUO Wenzhe
Cite this article:   
GONG Shaoqi,ZHANG Xiru,WANG Shaofeng, et al. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.19     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/122
[1] 高卫军, 孙立, 王长杰, 等. "资源三号"高分辨率立体测绘卫星三线阵相机设计与验证[J].航天返回与遥感, 2012, 33(3):25-34. Gao W J, Sun L, Wang C J, et al.Design and verification of three-line array camera for ZY-3 high resolution stereo mapping satellite[J].Spacecraft Recovery and Remote Sensing, 2012, 33(3):25-34.
[2] 唐新明, 谢俊峰.资源三号卫星在轨测试与应用分析[J].地理信息世界, 2013, 20(2):37-51. Tang X M, Xie J F.On-orbit test and application analysis of ZY-3 satellite[J].Geomatics World, 2013, 20(2):37-51.
[3] 李霖, 罗恒, 唐新明, 等.资源三号卫星多光谱图像特征分析和质量评价[J].国土资源遥感, 2014, 26(1):17-24.doi:10.6046/gtzyyg.2014.01.04. Li L, Luo H, Tang X M, et al.Characteristic analysis and quality assessment of ZY-3 multi-spectral image[J].Remote Sensing for Land and Resources, 2014, 26(1):17-24.doi:10.6046/gtzyyg.2014.01.04.
[4] 刘斌, 孙喜亮, 邸凯昌, 等.资源三号卫星传感器校正产品定位精度验证与分析[J].国土资源遥感, 2012, 24(4):36-40.doi:10.6046/gtzyyg.2012.04.07. Liu B, Sun X L, Di K C, et al.Accuracy analysis and validation of ZY-3's sensor corrected products[J].Remote Sensing for Land and Resources, 2012, 24(4):36-40.doi:10.6046/gtzyyg.2012.04.07.
[5] 汤国安, 刘学军, 闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005:4-5. Tang G A, Liu X J, Lv G N.DEM and Method and Theory of Geographical Analysis[M].Beijing:Science Press, 2005:4-5.
[6] Toutin T H.Elevation modelling from satellite visible and infrared(VIR) data[J].International Journal of Remote Sensing, 2001, 22(6):1097-1125.
[7] Hooper D M, Bursik M, Webb F H.Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA[J].Remote Sensing of Environment, 2003, 84(2):255-267.
[8] 张会平, 杨农, 张岳桥, 等.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感, 2004, 16(4):54-58.doi:10.6046/gtzyyg.2004.04.14. Zhang H P, Yang N, Zhang Y Q, et al.A GIS-based research on morpho structural features of the Minshan Tectonic Belt[J].Remote Sensing for Land and Resources, 2004, 16(4):54-58.doi:10.6046/gtzyyg.2004.04.14.
[9] 陈正位, 申旭辉, 曹忠全, 等.基于数字高程模型对亚东—谷露构造带第四纪活动习性的研究[J].地震, 2004, 24(sl):40-46. Chen Z W, Shen X H, Cao Z Q, et al.Study of quaternary activity features of the Yadong-Gulu Tectonic Belt based on the digital elevation model[J].Earthquake, 2004, 24(sl):40-46.
[10] 洪顺英, 申旭辉, 荆凤, 等.基于SRTM-DEM的阿尔泰山构造地貌特征分析[J].国土资源遥感, 2007, 19(3):62-66.doi:10.6046/gtzyyg.2007.03.14. Hong S Y, Shen X H, Jing F, et al.An analysis of geomorphology characteristics of the Altai mountain based on DEM[J].Remote Sensing for Land and Resources, 2007, 19(3):62-66.doi:10.6046/gtzyyg.2007.03.14.
[11] 江娃利, 肖振敏, 王焕贞, 等.内蒙大青山山前活动断裂带的地震破裂分段特征[J].地震地质, 2001, 23(1):24-34. Jiang W L, Shen Z M, Wang H Z, et al.Segmentation character of seimic surface ruptures of the piedmont active fault of Mt.Daqingshan, Inner Mongolia[J].Seismology and Geology, 2001, 23(1):24-34.
[12] 李克, 吴卫民, 杨发, 等.大青山山前断裂分段性研究[G]//中国地震学会地震地质专业委员会.中国活动断层研究.北京:地震出版社, 1994:102-113. Li K, Wu W M, Yang F, et al.Segment research of Daqingshan piedmont fault[G]//Committee on Seismogeology, Seismological Society of China.Research of Active Faults in China.Beijing:Seismological Press, 1994:102-113.
[13] 冉勇康, 张培震, 胡博, 等.大青山山前断裂呼和浩特段晚第四纪古地震活动历史[J].中国地震, 2002, 18(1):15-27. Ran Y K, Zhang P Z, Hu B, et al.Paleoseismic activity on the Hohhot segment of Daqingshan piedmont fault in the Late Quaternary history[J].Earthquake Research in China, 2002, 18(1):15-27.
[14] 唐新明, 林宗坚, 吴岚.基于等高线和高程点建立DEM的精度评价方法探讨[J].遥感信息, 1999(3):7-10. Tang X M, Lin Z J, Wu L.Accuracy discussion of DEM extracted based on contours and elevation points[J].Remote Sensing Information, 1999(3):7-10.
[15] Nikolakopoulos K G, Kamaratakis E K, Chrysoulaks N.SRTM vs ASTER elevation products.comparison for two regions in Crete, Greece[J].International Journal of Remote Sensing, 2006, 27(21):4819-4838.
[16] 郭笑怡, 张洪岩, 张正祥, 等.ASTER GDEM与SRTM3数据质量精度对比分析[J].遥感技术与应用, 2011, 26(3):334-339. Guo X Y, Zhang H Y, Zhang Z X, et al.Comparative analysis of the quality and accuracy between ASTER GDEM and SRTM3[J].Remote Sensing Technology and Application, 2011, 26(3):334-339.
[17] 马保起, 李克, 吴卫民, 等.大青山河谷地貌特征及新构造意义[J].地理学报, 1999, 54(4):327-335. Ma B Q, Li K, Wu W M, et al.Features and neotectonic significance of river valley landforms in Mt.Daqingshan[J].Acta Geographica Sinica, 1999, 54(4):327-335.
[18] 丁国瑜.全新世断层活动的不均匀性[J].中国地震, 1990, 6(1):1-9. Ding G Y.The inhomogeneity of faulting in Holocene[J].Earthquake Research in China, 1990, 6(1):1-9.
[19] 冉勇康, 张培震, 陈立春.河套断陷带大青山山前断裂晚第四纪古地震完整性研究[J].地学前缘, 2003, 10(sl):207-216. Ran Y K, Zhang P Z, Chen L C.Research on the completeness of paleoseismic activity history since Late Quaternary along the Daqingshan piedmont fault in Hetao Depression Zone, North China[J].Earth Science Frontiers, 2003, 10(sl):207-216.
[20] 吴中海, 吴珍汉.大青山晚白垩世以来的隆升历史[J].地球学报, 2003, 24(3):205-210. Wu Z H, Wu Z H.Uplift history of the Daqing Mountain since the Late Cretaceous[J].Acta Geoscientia Sinica, 2003, 24(3):205-210.
[21] 郑亚东, Davis G A, 王琮, 等.内蒙古大青山大型逆冲推覆构造[J].中国科学:D辑, 1998, 28(4):289-295. Zheng Y D, Davis G A, Wang Z, et al.Large thrust nappe structure in Mt Daqinngshan[J].Science in China:Series D, 1998, 28(4):289-295.
[22] 刘群.内蒙古大青山山前断裂带构造变形特征[J].世界地质, 2012, 31(1):113-119. Liu Q.Structural deformation characteristics of Daqingshan piedmont fault in Inner Mongolia[J].Global Geology, 2012, 31(1):113-119.
[1] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[2] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[3] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
[4] ZHANG Rui, YOU Shucheng, DU Lei, LU Jing, HE Yun, HU Yong. High-resolution remote sensing image segmentation based on improved superpixel and marker watershed[J]. Remote Sensing for Land & Resources, 2021, 33(1): 86-95.
[5] WEN Yanan, CHE Yahui, GUANG Jie, ZHANG Xiaomei, LI Zhengqiang. Quality evaluation of forest cover products over China[J]. Remote Sensing for Land & Resources, 2020, 32(3): 32-38.
[6] LI Guoqing, HUANG Jinghua, LIU Guan, LI Jie, ZHAI Bochao, DU Sheng. A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image: A case study of Mata watershed in Yan’an, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 121-128.
[7] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[8] Zhili LIU, Qibin ZHANG, Depeng YUE, Yuguang HAO, Kai SU. Extraction of urban built-up areas based on Sentinel-2Aand NPP-VIIRS nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 227-234.
[9] Jun ZHAI, Peng HOU, Zhiping ZHAO, Rulin XIAO, Changzhen YAN, Xuemin NIE. An analysis of landscape pattern spatial grain size effects in Qinghai Lake watershed[J]. Remote Sensing for Land & Resources, 2018, 30(3): 159-166.
[10] SHI Qingyun, ZHAO Zhifang, SONG Kun, YAN Jieru. Dynamic monitoring of water erosion desertification in Dianchi watershed based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 101-105.
[11] CUI Jian, SHI Penghui, BAI Weiming, LIU Xiaojing. Destriping model of GF-2 image based on moment matching[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 34-38.
[12] LI Shihua, ZHOU Junsong, WANG Jinliang. Spatio-temporal LUCC and driving force in Fuxian Lake watershed from 1974 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 132-139.
[13] MA Guorui, MA Yanli, JIANG Manzhen. Combinational color histogram and LBP textural features for remote sensing image segmentation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 32-40.
[14] LI Liang, LIANG Bin, XUE Peng, YING Guowei. Remote sensing image segmentation under vector map constraints[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 80-85.
[15] SHI Yunxia, WANG Fanxia, WU Zhaopeng. Multi-simulation of spatial distribution of land use based on CLUE-S in Jinhe Watershed[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 154-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech