Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 159-166     DOI: 10.6046/gtzyyg.2018.03.22
|
An analysis of landscape pattern spatial grain size effects in Qinghai Lake watershed
Jun ZHAI1, Peng HOU1, Zhiping ZHAO2, Rulin XIAO1(), Changzhen YAN3, Xuemin NIE4
1. Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China
2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
4. Ecological and Environmental Monitoring Center of Remote Sensing of Qinghai Province, Xining 810007, China
Download: PDF(6822 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Watershed is the basic and important spatial scale unit of ecosystem. The scientific analysis of watershed scale landscape pattern depends heavily on the accuracy of the selection of the optimal grain size. In this paper, Qinghai Lake watershed was selected as the study area. Based on the object-oriented classification method, the authors interpreted satellite remote sensing data to generate watershed landscape data. Resampling method was used to obtain different spatial grain size watershed landscape data. Then the landscape pattern indexes were calculated and statistical relation curve was drawn between each landscape pattern index and grain size. Thus the scale effect of landscape pattern index could be identified. Finally, landscape pattern index information loss caused by increasing grain size was used to determine the optimum spatial grain size of watershed scale landscape pattern analysis. The result showed watershed landscape pattern index changed significantly with the increase of spatial grain size, but laws of change were different. Taking into account the landscape pattern spatial grain size effect and the change characteristics of information loss, the authors hold that the best spatial grain size choice of watershed landscape pattern analysis was 90 m.

Keywords watershed      scale      landscape pattern      optimal grain size     
:  TP79  
Corresponding Authors: Rulin XIAO     E-mail: alexandershaw_84@163.com
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun ZHAI
Peng HOU
Zhiping ZHAO
Rulin XIAO
Changzhen YAN
Xuemin NIE
Cite this article:   
Jun ZHAI,Peng HOU,Zhiping ZHAO, et al. An analysis of landscape pattern spatial grain size effects in Qinghai Lake watershed[J]. Remote Sensing for Land & Resources, 2018, 30(3): 159-166.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.22     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/159
Fig.1  Geographical location of Qinghai Lake watershed
Fig.2  Examples of landscape in different grain sizes
景观格局指数 拟合函数 函数模型 R2
景观形状指数 幂函数 y = 352.61x-0.628 0.959 4
边界总长度 幂函数 y = 2e+8x-0.645 0.957 4
边界密度 幂函数 y = 82.876x-0.645 0.957 4
聚集度指数 幂函数 y = 93.324x-0.137 0.994 6
平均斑块分维数 幂函数 y = 1.064 6x-0.013 0.770 5
形状指数平均值 幂函数 y = 1.465 7x-0.059 0.653 9
蔓延度指数 幂函数 y = 62.387x-0.093 0.974 3
景观分割度 幂函数 y = 0.966 7x-0.009 0.397 2
分离度指数 幂函数 y = 28.556x-0.167 0.502 1
斑块数 幂函数 y = 319 685x-1.246 0.933 9
斑块密度 幂函数 y = 10.78x-1.246 0.933 9
面积加权形状指数 幂函数 y = 33.778x-0.411 0.808 7
斑块面积变异系数 幂函数 y = 10 600x-0.541 0.878 3
面积加权平均
斑块分维数
幂函数 y = 1.270 4x-0.029 0.927 2
平均斑块面积 二次函数 y = 0.519 8x2 +
5.711 1x + 12.88
0.999 4
边缘面积分维数 对数函数 y = 0.040 8lnx +
1.483 1
0.820 9
斑块面积标准差 线性函数 y = 322x + 1 252.1 0.974 7
平均欧几里得
最近距离
线性函数 y = 95.658x - 69.067 0.997 6
Tab.1  Functions of landscape indexes and grain sizes
Fig.3-1  Statistic curves of different landscape indexes with different grain sizes (power function type)
Fig.3-2  Statistic curves of different landscape indexes with different grain sizes (power function type)
Fig.4  Curves of indexes with different grain sizes (quadratic, logarithmic and linear function)
Fig.5  Curves of indexes with different grain sizes (piecewise function and stable type with increasing range of change)
Fig.6  Information loss of landscape indexes caused by the grain size effect
[1] 侯鹏, 王桥, 王昌佐 , 等. 流域土地利用/土地覆被变化的生态效应[J] 地理研究, 2011,30(11):2092-2098.
[1] Hou P, Wang Q, Wang C Z , et al. Ecological effect of land-use and land-cover change in a watershed scope[J] Geographical Research, 2012,30(11):2092-2098.
[2] 邬建国 . 景观生态学中的十大研究论题[J]. 生态学报, 2002,24(9):2074-2076.
doi: 10.3321/j.issn:1000-0933.2004.09.033 url: http://d.wanfangdata.com.cn/Periodical_stxb200409033.aspx
[2] Wu J G . The key research topics in landscape ecology[J]. Acta Ecologica Sinica, 2002,24(9):2074-2076.
[3] Gustafson E J . Quantifying landscape spatial pattern:What is the state of the art?[J]. Ecosystems, 1998,1(2):143-156.
doi: 10.1007/s100219900011 url: http://link.springer.com/10.1007/s100219900011
[4] 张娜 . 生态学中的尺度问题:内涵与分析方法[J]. 生态学报, 2006,26(7):2340-2355.
[4] Zhang N . Scale issues in ecology:Concepts of scale and scale analysis[J]. Acta Ecologica Sinica, 2006,26(7):2340-2355.
[5] 邬建国 . 景观生态学——格局、过程、尺度与等级[M]. 2版.北京: 高等教育出版社, 2007: 95-152.
[5] Wu J G .Landscape Ecology Pattern, Process,Scale and Hierarchy[M].2nd ed. Beijing: Higher Education Press, 2007: 95-152.
[6] 宗秀影, 刘高焕, 乔玉良 , 等. 黄河三角洲湿地景观格局动态变化分析[J]. 地球信息科学学报, 2009,11(1):91-97.
doi: 10.3969/j.issn.1560-8999.2009.01.014 url: http://d.wanfangdata.com.cn/Periodical/dqxxkx200901014
[6] Zong X Y, Liu G H, Qiao Y L , et al. Study on dynamic changes of wetland landscape pattern in Yellow River delta[J]. Journal of Geo-Information Science, 2009,11(1):91-97.
[7] 张帅, 邵全琴, 刘纪远 , 等. 黄河源区玛多县土地利用/覆被及景观格局变化的遥感分析[J]. 地球信息科学, 2007,9(4):109-115,128.
[7] Zhang S, Shao Q Q, Liu J Y , et al. Land use and landscape pattern change in Madoi County,the source region of Yellow River[J]. Geo-Information Science, 2007,9(4):109-115,128.
[8] 毕如田, 高艳 . 典型地貌景观指数的多尺度效应分析——以山西省运城市为例[J]. 地球信息科学学报, 2012,14(3):338-343.
doi: 10.3724/SP.J.1047.2012.00338 url: http://d.wanfangdata.com.cn/Periodical/dqxxkx201203009
[8] Bi R T, Gao Y . Analysis of multi-scale effect of landscape indices of classical landforms in Yuncheng City,Shanxi Province[J]. Journal of Geo-Information Science, 2012,14(3):338-343.
[9] 郭冠华, 陈颖彪, 魏建兵 , 等. 粒度变化对城市热岛空间格局分析的影响[J]. 生态学报, 2012,32(12):3764-3772.
doi: 10.5846/stxb201107181068 url: http://doi.med.wanfangdata.com.cn/10.5846/stxb201107181068
[9] Guo G H, Chen Y B, Wei J B , et al. Impacts of grid sizes on urban heat island pattern analysis[J]. Acta Ecologica Sinica, 2012,32(12):3764-3772.
[10] 孙晓宇, 苏奋振, 吕婷婷 , 等. 珠江口西岸土地利用景观格局变化及驱动力分析[J]. 地球信息科学学报, 2009,11(4):436-441.
doi: 10.3969/j.issn.1560-8999.2009.04.005 url: http://d.wanfangdata.com.cn/Periodical/dqxxkx200904005
[10] Sun X Y, Su F Z, Lyu T T , et al. Analysis on landscape spatial pattern changes of land use and its driving forces in coastal zone of western Pearl River estuary[J]. Journal of Geo-Information Science, 2009,11(4):436-441.
[11] 王思远, 刘纪远, 张增祥 , 等. 近10年中国土地利用格局及其演变[J]. 地理学报, 2002,57(5):523-530.
doi: 10.3321/j.issn:0375-5444.2002.05.003 url: http://d.wanfangdata.com.cn/Periodical_dlxb200205003.aspx
[11] Wang S Y, Liu J Y, Zhang Z X , et al. Spatial pattern change of land use in China in recent 10 years[J]. Acta Geographica Sinica, 2002,57(5):523-530.
[12] 申卫军, 邬建国, 林永标 , 等. 空间粒度变化对景观格局分析的影响[J]. 生态学报, 2003,23(12):2506-2519.
doi: 10.3321/j.issn:1000-0933.2003.11.003 url: http://d.wanfangdata.com.cn/Periodical/stxb200312002
[12] Shen W J, Wu J G, Lin Y B , et al. Effects of changing grain size on landscape pattern analysis[J]. Acta Ecologica Sinica, 2003,23(12):2506-2519.
[13] Turner M G, O’Neill R V,Gardner R H ,et al.Effects of changing spatial scale on the analysis of landscape pattern[J]. Landscape Ecology, 1989,3(3/4):153-162.
doi: 10.1007/BF00131534 url: http://link.springer.com/10.1007/BF00131534
[14] Wu J G, Shen W J, Sun W Z , et al. Empirical patterns of the effects of changing scale on landscape metrics[J]. Landscape Ecology, 2002,17(8):761-782.
doi: 10.1023/A:1022995922992 url: http://link.springer.com/10.1023/A:1022995922992
[15] Wu J G . Effects of changing scale on landscape pattern analysis:Scaling relations[J]. Landscape Ecology, 2004,19(2):125-138.
doi: 10.1023/B:LAND.0000021711.40074.ae url: http://link.springer.com/10.1023/B:LAND.0000021711.40074.ae
[16] 于磊, 赵彦伟, 张远 , 等. 基于最佳分析粒度的大辽河流域湿地景观格局分析[J]. 环境科学学报, 2011,31(4):873-879.
url: http://d.wanfangdata.com.cn/Periodical_hjkxxb201104029.aspx
[16] Yu L, Zhao Y W, Zhang Y , et al. Landscape pattern analysis of wetlands in the Daliaohe Watershed,based on optimal grain size[J]. Acta Scientiae Circumstantiae, 2011,31(4):873-879.
[17] 郭琳, 宋戈, 张远景 , 等. 基于最佳分析粒度的巴彦县土地利用景观空间格局分析[J]. 资源科学, 2013,35(10):2052-2060.
url: http://d.wanfangdata.com.cn/Periodical_zykx201310016.aspx
[17] Guo L, Song G, Zhang Y J , et al. Land-use spatial analysis for Bayan County based on optimal grain size[J]. Resources Science, 2013,35(10):2052-2060.
[18] 王艳芳, 沈永明, 陈寿军 , 等. 景观格局指数相关性的幅度效应[J], 生态学杂志, 2012,31(8):2091-2097.
[18] Wang Y F, Shen Y M, Chen S J , et al. Range effect of the correlations among landscape metrics[J], Chinese Journal of Ecology, 2012,31(8):2091-2097.
[19] 游丽平, 林广发, 杨陈照 , 等. 景观指数的空间尺度效应分析——以厦门岛土地利用格局为例[J]. 地球信息科学, 2008,10(1):74-79.
[19] You L P, Lin G F, Yang C Z , et al. The effects of spatial scales on landscape indices——A case study of the landuse pattern of Xiamen Island[J]. Geo-Information Science, 2008,10(1):74-79.
[20] 陈利顶, 傅伯杰, 徐建英 , 等. 基于"源-汇"生态过程的景观格局识别方法——景观空间负荷对比指数[J]. 生态学报, 2003,23(11):2406-2413.
doi: 10.3321/j.issn:1000-0933.2003.11.025 url: http://d.wanfangdata.com.cn/Periodical/stxb200311025
[20] Chen L D, Fu B J, Xu J Y , et al. Location-weighted landscape contrast index:A scale independent approach for landscape pattern evaluation based on "Source-Sink" ecological processes[J]. Acta Ecologica Sinic, 2003,23(11):2406-2413.
[21] 崔步礼, 常学礼, 左登华 , 等. 沙地景观中矢量数据栅格化方法及尺度效应[J]. 生态学报, 2009,29(5):2463-2472.
url: 年度引用
[21] Cui B L, Chang X L, Zuo D H , et al. Rasterizing vector data and its scaling effect for a sand landscape[J]. Acta Ecologica Sinic, 2009,29(5):2463-2472.
[22] 吕志强, 吴志峰, 张景华 . 基于最佳分析尺度的广州市景观格局分析[J]. 地理与地理信息科学, 2007,23(4):89-92.
[22] Lyu Z Q, Wu Z F, Zhang J H . Landscape pattern analysis of Guangzhou based on optimization-scale[J]. Geography and Geo-Information Science, 2007,23(4):89-92.
[23] 郑建蕊, 蒋卫国, 周廷刚 , 等. 洞庭湖区湿地景观指数选取与格局分析[J]. 长江流域资源与环境, 2010,19(3):305-310.
[23] Zheng J R, Jiang W G, Zhou T G , et al. Selection of wetland landscape indices and analysis of landscape pattern in Dongting Lake area[J]. Resources and Environment in the Yangtze Basin, 2010,19(3):305-310.
[24] 邢宇 . 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015,27(3):99-107.doi: 10.6046/gtzyyg.2015.03.17.
doi: 10.6046/gtzyyg.2015.03.17
[24] Xing Y . Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. Remote Sensing for Land and Resources, 2015,27(3):99-107.doi: 10.6046/gtzyyg.2015.03.17.
[25] 江波, 张路, 欧阳志云 . 青海湖湿地生态系统服务价值评估[J]. 应用生态学报, 2015,26(10):3137-3144.
url: http://d.wanfangdata.com.cn/Periodical/yystxb201510027
[25] Jiang B, Zhang L, Ouyang Z Y . Ecosystem services valuation of Qinghai Lake[J]. Chinese Journal of Applied Ecology, 2015,26(10):3137-3144.
[26] 姜翠红, 李广泳, 程滔 , 等. 青海湖流域生态服务价值时空格局变化及其影响因子研究[J]. 资源科学, 2016,38(8):1572-1584.
doi: 10.18402/resci.2016.08.15 url: http://d.wanfangdata.com.cn/Periodical/zykx201608015
[26] Jiang C H, Li G Y, Cheng T , et al. Spatial-temporal pattern variation and impact factors of ecosystem service values in the Qinghai Lake Watershed[J]. Resources Science, 2016,38(8):1572-1584.
[27] 杨娅楠, 王金亮, 陈光杰 , 等. 抚仙湖流域土地利用格局与水质变化关系[J]. 国土资源遥感, 2016,28(1):159-165.doi: 10.6046/gtzyyg.2016.01.23.
doi: 10.6046/gtzyyg.2016.01.23 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201601023
[27] Yang Y N, Wang J L, Chen G J , et al. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. Remote Sensing for Land and Resources, 2016,28(1):159-165.doi: 10.6046/gtzyyg.2016.01.23.
[1] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[2] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[3] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[4] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[5] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[6] WANG Meiya, XU Hanqiu. A comparative study on the changes in heat island effect in Chinese and foreign megacities[J]. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
[7] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[8] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[9] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[10] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[11] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
[12] ZHANG Rui, YOU Shucheng, DU Lei, LU Jing, HE Yun, HU Yong. High-resolution remote sensing image segmentation based on improved superpixel and marker watershed[J]. Remote Sensing for Land & Resources, 2021, 33(1): 86-95.
[13] LI Guoqing, HUANG Jinghua, LIU Guan, LI Jie, ZHAI Bochao, DU Sheng. A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image: A case study of Mata watershed in Yan’an, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 121-128.
[14] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[15] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech