Please wait a minute...
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 45-53     DOI: 10.6046/zrzyyg.2020377
Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing
ZANG Chuankai1(), SHEN Fang1,2(), YANG Zhengdong3
1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
2. Institute of Eco-Chongming(IEC), Shanghai 200062, China
3. Hydrological Station of Shanghai Chongming District, Shanghai 200062, China
Download: PDF(6517 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

With the inland waters in Chongming Island, Shanghai as the study area, this study researched the color changes of waters and the identification of suspected polluted waters using unmanned aerial vehicle (UAV) hyperspectral remote sensing images. First, reflectance calibration was carried out for the radiance signals detected by the hyperspectral sensor carried by UAVs. Compared with on-site observations, this calibration method was more accurate, the average unbiased absolute percentage differences of various bands were 13.34% on average and the average determination coefficient R2 was 0.83. Afterward, the inversion of hue angle and apparent visible wavelength (AVW) was conducted using the hyperspectral reflectance of the inland waters according to the CIE-XYZ color space and weighted harmonic mean. Then an inversion model of water quality parameters was constructed based on measured data, and the water colors in the study area were classified by setting the threshold of hue angle. As indicated by the results, there exist many abnormal yellowish-brown inland waters in the Chongming Island in dry seasons and it is necessary to strengthen the supervision and governance of the aquatic environment of major shipping rivers. Finally, the suspected polluted inland waters were identified and analyzed by integrating the inversion results of the parameters of water color and water quality. This study shows that UAV hyperspectral remote sensing can be used to obtain the inversion results with high temporal-spatial continuity of the parameters of water color and water quality, which will provide credible technical support for the aquatic environment investigations of inland waters while saving costs.

Keywords UAV      hyperspectral remote sensing      water colour      inland waters      aquatic environment     
ZTFLH:  P231.1  
Corresponding Authors: SHEN Fang     E-mail:;
Issue Date: 24 September 2021
E-mail this article
E-mail Alert
Articles by authors
Chuankai ZANG
Zhengdong YANG
Cite this article:   
Chuankai ZANG,Fang SHEN,Zhengdong YANG. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
URL:     OR
Fig.1  Research area and sampling point
水质参数 最小值 最大值 平均值 标准差
Chl-a/(mg·m-3) 4.62 311.63 41.98 54.15
TSM/(mg·L-1) 4.50 281.67 45.71 42.26
CDOM/m 0.30 2.22 0.88 0.46
浊度/NTU 5.95 142.00 51.17 30.23
TN/(mg·L-1) 0.44 2.53 1.34 0.53
TP/(mg·L-1) 0.009 0.93 0.15 0.18
Tab.1  Concentration distribution of water quality parameters at sampling points
Fig.2  Noise reduction process and evaluation of UAV hyperspectral image
Fig.3  Spectral curves and corresponding Hue angle of different types of water
自变量(x) 反演模型
TSM/(mg·L-1) x=Rrs(733) y=251 886x2-7 300.8x+74.94
CDOM/m x1=Rrs(600)/Rrs(709), x2=Rrs(652)/Rrs(725) y=2.098x1+0.286x2+2.950
y=7 084.4x3-1 177.7x2+55.84x-0.48
Tab.2  Inversion model for water quality parameters
Fig.4  UAV and in situ measured Rrs comparison verification
Fig.5  Verification of accuracy of UAV hyperspectral inversion of water colour parameters and water quality parameters
Fig.6  Hue angle classification of rivers and lakes in Chongming Island, Shanghai
Fig.7  Identification of suspected polluted water in the key observational rivers of Chongming Island in Shanghai
[1] 陈文召, 李光明, 徐竟成, 等. 水环境遥感监测技术的应用研究进展[J]. 中国环境监测, 2008(3):6-11.
[1] Chen W Z, Li G M, Xu J C, et al. Application of remote sensing technology in water environment monitoring[J]. Environmental Monitoring in China, 2008(3):6-11.
[2] Dall’olmo G, Gitelson A A, Rundquist D C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J]. Geophysical Research Letters, 2003, 30(18):1938-1942.
[3] Nechard B, Ruddick K G, Park Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters[J]. Remote Sensing of Environment, 2010, 114(4):854-866.
doi: 10.1016/j.rse.2009.11.022 url:
[4] Duan H, Ma R, Loiselle S A, et al. Optical characterization of black water blooms in eutrophic waters[J]. Science of The Total Environment, 2014, 482-483:174-183.
doi: 10.1016/j.scitotenv.2014.02.113 url:
[5] Wernand M R, Hommersom A, Woerd H J V D. MERIS-based ocean colour classification with the discrete Forel-Ule scale[J]. Ocean Science, 2013, 9(3):477-487.
doi: 10.5194/os-9-477-2013 url:
[6] CIE. Commission Internationale de l'Eclairage(CIE)Proceedings 1931[M]. Cambridge: Cambridge University Press, 1932.
[7] Woerd H J V D, Wernand M R. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sensing, 2018, 10(2):180-198.
doi: 10.3390/rs10020180 url:
[8] Woerd H J V D, Wernand M R. True colour classification of natural waters with medium-spectral resolution satellites:SeaWiFS,MODIS,MERIS and OLCI[J]. Sensors (Basel), 2015, 15(10):25663-25680.
doi: 10.3390/s151025663 url:
[9] Wang S, Li J, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018, 217:444-460.
doi: 10.1016/j.rse.2018.08.026 url:
[10] Wang S, Li J, Shen Q, et al. MODIS-Based radiometric color extraction and classification of inland water with the forel-ule scale:A case study of Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2):907-918.
doi: 10.1109/JSTARS.4609443 url:
[11] Zhao Y, Shen Q, Wang Q, et al. Recognition of water colour anomaly by using hue angle and Sentinel 2 image[J]. Remote Sensing, 2020, 12(4):716-737.
doi: 10.3390/rs12040716 url:
[12] Vandermeulen R A, Mannino A, Craig S E, et al. 150 shades of green:Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean[J]. Remote Sensing of Environment, 2020, 247:111900.
doi: 10.1016/j.rse.2020.111900 url:
[13] Zhang F, Li J, Shen Q, et al. Algorithms and schemes for Chlorophyll a estimation by remote sensing and optical classification for Turbid Lake Taihu,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):350-364.
doi: 10.1109/JSTARS.4609443 url:
[14] Tan J, Cherkauer K A, Chaubey I. Using hyperspectral data to quantify water-quality parameters in the Wabash River and its tributaries,Indiana[J]. International Journal of Remote Sensing, 2015, 36(21):5466-5484.
doi: 10.1080/01431161.2015.1101654 url:
[15] 孙德勇, 李云梅, 王桥, 等. 利用高光谱数据估算太湖水体CDOM浓度的神经网络模型[J]. 武汉大学学报(信息科学版), 2009, 34(7):851-855.
[15] Sun D Y, Li Y M, Wang Q, et al. Remote sensing retrieval of CDOM concentration in Lake Taihu with hyper-spectral data and neural network model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):851-855.
[16] 张颖纯, 姜德刚, 李建华. 崇明岛“闸控型”河网水体富营养化特征及其影响因素[J]. 湖泊科学, 2013, 25(3):366-372.
[16] Zhang Y C, Jiang D G, Li J H, et al. Characteristics of eutrophication and its affecting factors in gate-controlled river network system of Chongming Island[J]. Journal of Lake Sciences, 2013, 25(3):366-372.
doi: 10.18307/2013.0309 url:
[17] 朱浩, 刘兴国, 吴宗凡, 等. 上海市大莲湖生态修复区富营养化评价及氮磷平衡研究[J]. 水土保持通报, 2013, 33(6):157-160.
[17] Zhu H, Liu X G, Wu Z F, et al. Assessment of eutrophication and N,P balance in Dalian Lake ecological restoration region of Shanghai City[J]. Bulletin of Soil and Water Conservation, 2013, 33(6):157-160.
[18] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004(1):37-44.
[18] Tang J W, Tian G L, Wang X Y, et al. The Methods of water spectra measurement and analysis I:Above-water method[J]. Journal of Remote Sensing, 2004(1):37-44.
[19] 国家环保总局. HJ/T 91—2002地表水和污水监测技术规范[S]. 北京: 中国环境科学出版社, 2002.
[19] National Environmental Protection Agency. HJ/T 91—2002 Environmental quality standards for surface water[S]. Beijing: China Environmental Press, 2002
[20] Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b[J]. Photosynth Res, 2002, 73(1-3):149-156.
doi: 10.1023/A:1020470224740 url:
[21] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (Yellow Substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1):43-53.
doi: 10.4319/lo.1981.26.1.0043 url:
[22] 国家环境保护局. HJ 636—2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 北京: 中国环境科学出版社, 2012.
[22] National Environmental Protection Agency. HJ 636—2012 Water quality-determination of total nitrogen-alkaline potassium persulfate digestion-ultraviolet spectrophotometric method[S]. Beijing: China Environmental Press, 2012.
[23] 国家环境保护总局. GB-11893—89水质总磷的测定钼酸铵分光光度法[S]. 北京: 中国环境科学出版社, 1990.
[23] National Environmental Protection Agency. GB-11893—89 Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S]. Beijing: China Environmental Press, 1990.
[24] 国家环保总局. GB 11901—89水质悬浮物的测定重量法[S]. 北京: 中国标准出版社, 1990.
[24] National Environmental Protection Agency. GB-11901—89 Water quality-determination of suspended matter gravimetric method [S]. Beijing: China Environmental Press. 1990.
[25] 勾志阳, 晏磊, 陈伟, 等. 无人机高光谱成像仪场地绝对辐射定标及验证分析[J]. 光谱学与光谱分析, 2012, 32(2):430-434.
[25] Gou Z Y, Yan L, Chen W, et al. In-Flight Absolute Radiometric calibration of UAV hyperspectral camera and its validation analysis[J]. Spectroscpy and Spectral Analysis, 2012, 32(2):430-434.
[26] Slater P N, Biggar S F, Holm R G, et al. Reflectance-and radiance-based methods for the in.flight absolute calibration of multispectral sensors[J]. Remote Sensing of Environment, 1987(22):11-37.
[27] Shang S, Lee Z, Lin G, et al. Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV[J]. Remote Sensing of Environment, 2017, 198:85-94.
doi: 10.1016/j.rse.2017.05.036 url:
[28] Mobley C D. Light and water:Radiative transfer in natural waters[M]. USA: Academic Press, 1994.
[29] Yang J, Liu C, Shu R, et al. The extraction of urban surface water from hyperspectral data based on spectral indices[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(11):1749-1759.
doi: 10.1007/s12524-018-0828-5 url:
[30] 刘翔. 基于光谱维变换的高光谱图像目标探测研究[D]. 北京:中国科学院研究生院(遥感应用研究所), 2008.
[30] Liu X. Target detection on hyperspectral imagery based on transformation of spectral dimensions[D]. Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences, 2008.
[31] Brigham E O, Morrow E R. The fast fourier transform[J]. Acoustics Speech&Signal Processing IEEE Transactions on, 2007, 4(12):63-70.
[32] Landsat 8. Data Users Handbook Version 2.0.Department of the Interior[R]. Sioux Falls,South Dakota:USGS, 2016.
[33] Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.
doi: 10.1109/36.3001 url:
[34] Gao B C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers[J]. Remote Sensing of Environment, 1993, 43(1):23-33.
doi: 10.1016/0034-4257(93)90061-2 url:
[35] 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002(5):47-49.
[35] Wang M C, Liu X Q, Zhang J H. Evaluate method and classification standard on lake eutrophication[J]. China Environmental Monitoring Centre, 2002(5):47-49.
[36] 国家环境保护总局. GB 3838—2002地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002.
[36] National Environmental Protection Agency. GB 3838—2002 Environmental quality standards for surface water[S]. Beijing: China Environment Press. 2002.
[1] WANG Zhenhua, TAN Zhilian, LI Jing, CHANG Yingli. Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 10-16.
[2] CHEN Kai, WANG Chun, DAI Wen, SHENG Yehua, LIU Aili, TANG Guoan. Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points[J]. Remote Sensing for Natural Resources, 2023, 35(3): 107-115.
[3] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[4] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[5] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[6] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[9] ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
[10] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[11] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[12] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[13] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[14] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[15] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech