Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 122-129     DOI: 10.6046/gtzyyg.2016.01.18
Technology Application |
Drought monitoring and analysis of Huanghuai Hai plain based on TRMM precipitation data
CHEN Cheng1,2,3, ZHAO Shuhe1,2,3
1. Jiangsu Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China;
2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing 210023, China;
3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China
Download: PDF(10363 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

TRMM (tropical rainfall measuring mission) precipitation data, covering a wide range with high temporal resolution, is an effective data source to monitor drought on a regional scale. The spatial resolution of 0.25° TRMM 3B43 data was processed using the downscaling method. The downscaling data with 0.05° spatial resolution were used to construct a percentage of monthly precipitation anomalies (Pa index) and Z index, and the two indices were used to monitor the temporal and spatial change of drought from the winter of 2010 to the spring of 2011 in the Huanghuai Hai plain. The standardized precipitation index (SPI) during the same period was also calculated to verify the results. The results showed that the downscaling results had higher reliability with the fitting result R2 higher than 0.76. Pa index that emphasizes gains and losses of precipitation can be used for drought monitoring on the regional scale, but it lacks the space distribution of drought; Z index fitting the precipitation based on the Person-Ⅲ distribution is ideal for monitoring the temporal and spatial distribution of drought, but the drought grade is difficult to divide. The drought grade of Pa index was used to correct the drought grade of Z index. Two indices and SPI had higher degree of correlation with R2 greater than 0.75, indicating that Pa and Z index is effective for drought monitoring. The results achieved by the authors could provide a practical means for monitoring drought on a regional scale.

Keywords ASTER      lithologic index(LI)      principal component analysis      extraction of mineral and rock information      prospecting prediction     
:  TP79  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Gong
ZHU Jiawei
MAO Xiancheng
Cite this article:   
CHENG Gong,ZHU Jiawei,MAO Xiancheng. Drought monitoring and analysis of Huanghuai Hai plain based on TRMM precipitation data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 122-129.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.18     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/122

[1] 张强,张良,崔显成,等.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展,2011,26(7):763-778. Zhang Q,Zhang L,Cui X C,et al.Progresses and challenges in drought assessment and monitoring[J].Advances in Earth Sciences,2011,26(7):763-778.

[2] 刘庚山,郭安红,安顺清,等.帕默尔干旱指标及其应用研究进展[J].自然灾害学报,2004,13(4):21-27. Liu G S,Guo A H,An S Q,et al.Research progress in Palmer drought severity index and it's application[J].Journal of Natural Disasters,2004,13(4):21-27.

[3] 杨绍锷,吴炳方,熊隽,等.基于TRMM降水产品计算月降水量距平百分率[J].遥感信息,2010(5):62-66. Yang S E,Wu B F,Xiong J,et al.Calculation of monthly precipitation anomaly percentage using TRMM rainfall product[J].Remote Sensing Information,2010(5):62-66.

[4] 林盛吉,许月萍,田烨,等.基于Z指数和SPI指数的钱塘江流域干旱时空分析[J].水力发电学报,2012,31(2):20-26. Lin S J,Xu Y P,Tian Y,et al.Spatial and temporal analysis of drought in Qiantang River Basin based on Z index and SPI[J].Journal of Hydroelectric Engineering,2012,31(2):20-26.

[5] McKee T B,Doesken N J,Kleist J.The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference on Applied Climatology.Boston,MA:American Meteorological Society,1993,17(22):179-183.

[6] 罗春,刘辉,戚陆越.基于遥感指数的生态变化评估——以常宁市为例[J].国土资源遥感,2014,26(4):145-150.doi:10.6046/gtzyyg.2014.04.23. Luo C,Liu H,Qi L Y.Ecological changes assessment based on remote sensing indices:A case study of Changning City[J].Remote sensing for Land and Resources,2014,26(4):145-150.doi:10.6046/gtzyyg.2014.04.23.

[7] 李博,唐世浩.基于TRMM卫星资料分析三峡蓄水前后的局地降水变化[J].长江流域资源与环境,2014,23(5):617-625. Li B,Tang S H.Local precipitation changes induced by the Three Gorges reservoir based on TRMM observations[J].Resources and Environment in the Yangtze Basin,2014,23(5):617-625.

[8] 臧文斌,阮本清,李景刚,等.基于TRMM降雨数据的西南地区特大气象干旱分析[J].中国水利水电科学研究院学报,2010,8(2):97-106. Zang W B,Ruan B Q,Li J G,et al.Analysis of extraordinary meteorological drought in Southwest China by using TRMM precipitation data[J].Journal of China Institute of Water Resources and Hydropower Research,2010,8(2):97-106.

[9] 李景刚,李纪人,黄诗峰,等.基于TRMM数据和区域综合Z指数的洞庭湖流域近10年旱涝特征分析[J].资源科学,2010,32(6):1103-1110. Li J G,Li J R,Huang S F,et al.Characteristics of the recent 10-year flood/drought over the Dongting Lake Basin based on TRMM precipitation data and regional integrated Z-index[J].Resources Science,2010,32(6):1103-1110.

[10] 杜灵通,田庆久,黄彦,等.基于TRMM数据的山东省干旱监测及其可靠性检验[J].农业工程学报,2012,28(2):121-126. Du L T,Tian Q J,Huang Y,et al.Drought monitoring based on TRMM data and its reliability validation in Shandong province[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(2):121-126.

[11] Yan N N,Wu B F,Chang S,et al.Evaluation of TRMM Precipitation Product for Meteorological Drought Monitoring in Hai Basin[C]//IOP Conference Series:Earth and Environmental Science.IOP Publishing,2014,17(1):012093.

[12] 中国国家标准化管理委员会.GB/T20481-2006气象干旱等级[S].北京:中国标准出版社,2006. Standardization Administration of the People's Republic of China.GB/T20481-2006 Classification of Meteorological Drought Category[S].Beijing:China Standard Publishing House,2006.

[13] Jia S F,Zhu W B,Lyu A F,et al.A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J].Remote Sensing of Environment,2011,115(12):3069-3079.

[14] Immerzeel W W,Rutten M M,Droogers P.Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J].Remote Sensing of Environment,2009,113(2):362-370.

[15] Duan Z,Bastiaanssen W G M.First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling——calibration procedure[J].Remote Sensing of Environment,2013,131:1-13.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[3] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[4] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[5] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[6] AN Jianjian, MENG Qingyan, HU Die, HU Xinli, YANG Jian, YANG Tianliang. The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2021, 33(2): 93-99.
[7] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[8] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[9] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[10] Jie CHEN, Zihong GAO, Shanshan WANG, Dingjian JIN. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2020, 32(2): 1-10.
[11] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[12] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[13] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[14] Honglin MA, Weijie JIA, Changliang FU, Wei LI. Extraction of geological structural and alteration information and the prediction of metallogenic favorable locations in northeastern Jeddah, Saudi Arabia[J]. Remote Sensing for Land & Resources, 2019, 31(3): 174-182.
[15] Junbin DUAN, Peng PENG, Zhi YANG, Le LIU. Prediction of polymetallic metallogenic favorable area based on ASTER data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 193-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech