Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (3) : 123-129     DOI: 10.6046/gtzyyg.2016.03.20
|
Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR
SUN Xiaopeng1, LU Xiaoya2, WEN Xuehu1, ZHEN Yan1, WANG Lei1
1. Geographic National Condition Monitoring Engineering Research Center of Sichuan Province, No. 6 Topographic Survey Team, National Mapping Geographic Information Bureau, Chengdu 610500, China;
2. School of Computer Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
Download: PDF(9190 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

After Wenchuan earthquake, the aftershocks happened frequently. Coupled with the rapid development of cities, they are likely to cause ground subsidence. So monitoring the surface of Chengdu Plain and obtaining the deformation information could provide scientific basis for the relevant decisions. In this paper, based on ENVISAT ASAR data, the authors monitored the ground subsidence of Chengdu Plain from 2008 to 2010 using SBAS-InSAR technology. The results show that the average surface deformations were between -8 to 14 mm in major cities in the Chengdu Plain during the monitoring period, the deformation is not prominent, and the western part of the plain showed a uplift trend caused by earthquake. The subsidence area in the north of the Chengdu City and south to the Deyang City was up to -22 mm with the expansion of the subsidence area. The monitoring results were validated by measured data and the accuracy is 2.9 mm. The Chengdu Plain has no regional tectonic setting of subsidence and has abundant groundwater resources, so the natural cause of subsidence is not obvious; the city building activity might be the major cause of subsidence.

Keywords remote sensing images of high spatial resolution      support vector machine(SVM)      principal component analysis      grid search method      classification performance     
:  TP79  
Issue Date: 01 July 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Zeng
LI Dan
KE Yinghai
WU Yanchen
LI Xiaojuan
GONG Huili
Cite this article:   
DENG Zeng,LI Dan,KE Yinghai, et al. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 123-129.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.03.20     OR     https://www.gtzyyg.com/EN/Y2016/V28/I3/123

[1] 郑铣鑫,武强,侯艳声,等.关于城市地面沉降研究的几个前沿问题[J].地球学报,2002,23(3):279-282. Zheng X X,Wu Q,Hou Y S,et al.Some frontier problems on land subsidence research[J].Acta Geoscientia Sinica,2002,23(3):279-282.
[2] 殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16(2):1-8. Yin Y P,Zhang Z C,Zhang K J.Land subsidence and countermeasures for its prevention in China[J].The Chinese Journal of Geological Hazard and Control,2005,16(2):1-8.
[3] 杨成生,刘媛媛,敖萌.基于SBAS时序分析的大同地面沉降与地下水活动研究[J].国土资源遥感,2015,27(1):127-132.doi:10.6046/gtzyyg.2015.01.20. Yang C S,Liu Y Y,Ao M.Study of land subsidence and groundwater activity using SBAS time-series analysis[J].Remote Sensing for Land and Resources,2015,27(1):127-132.doi:10.6046/gtzyyg.2015.01.20.
[4] 刘志敏,李永生,张景发,等.基于SBAS-InSAR的长治矿区地表形变监测[J].国土资源遥感,2014,26(3):37-42.doi:10.6046/gtzyyg.2014.03.06. Liu Z M,Li Y S,Zhang J F,et al.An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J].Remote Sensing for Land and Resources,2014,26(3):37-42.doi:10.6046/gtzyyg.2014.03.06.
[5] 尹宏杰,朱建军,李志伟,等.基于SBAS的矿区形变监测研究[J].测绘学报,2011,40(1):52-58. Yin H J,Zhu J J,Li Z W,et al.Ground subsidence monitoring in mining area using DInSAR SBAS algorithm[J].Acta Geodaetica et Cartographica Sinica,2011,40(1):52-58.
[6] Berardino P,Fornaro G,Lanari R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2382.
[7] 廖明生,王腾.时间序列InSAR技术与应用[M].北京:科学出版社,2014:84-86. Liao M S,Wang T.Time Series InSAR Technology and Application[M].Beijing:Science Press,2014:84-86.
[8] 林向东.汶川地震以来龙门山断裂带地震矩张量时空演化特征[D].北京:中国地震局地球物理研究所,2014:84-86. Lin X D.Longmen Shan Fault Seismic Moment Tensor Characteristic Temporal Evolution Since the Earthquake[D].Beijing:Institute of Geophysics,China Eatrhquake Administration,2014:84-86.
[9] 钱洪,唐荣昌.成都平原的形成与演化[J].四川地震,1997(3):1-7. Qian H,Tang R C.On the formation and evolution of the Chengdu Plain[J].Earthquake Research in Sichuan,1997(3):1-7.
[10] 何银武.试论成都盆地(平原)的形成[J].中国区域地质,1987(2):169-175. He Y W.On the formation of the Chengdu Basin(Plain)[J].Regional Geology of China,1987(2):169-175.
[11] 李永昭,郭兵.成都平原的晚新生代构造[J].成都理工大学学报:自然科学版,2008,35(4):371-376. Li Y Z,Guo B.Cenozonic tectonics of Chengdu Plain, Sichuan,China[J].Journal of Chengdu University of Technology:Science & Technology Edition,2008,35(4):371-376.
[12] 欧洋铭,白若男,朱国宇.成都市水资源承载力动态变化及成因[J].南水北调与水利科技,2012,10(6):110-114. Ou Y M,Bai R N,Zhu G Y.Dynamic variation of water resources carrying capacity and its causes in Chengdu[J].South-to-North Water Transfers and Water Science and Technology,2012,10(6):110-114.
[13] 郑义加.成都平原地下水资源分布的初步分析[J].四川水利,2005,26(4):28-31. Zheng Y J.Tentative analysis of groundwater resources distribution in the Chengdu Plain[J].Sichuan Water Resources,2005,26(4):28-31.

[1] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[2] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[3] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[4] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[5] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[6] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[7] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[8] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
[9] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
[10] Hongmin ZHANG, Yanfang ZHANG, Mao TIAN, Chunling WU. Dynamic monitoring of eco-environment quality changes based on PCA:A case study of urban area of Baoji City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 203-209.
[11] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[12] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
[13] DIAO Shujuan, LIU Chunling, ZHANG Tao, HE Peng, GUO Zhaocheng, TU Jienan. Extraction of remote sensing information for lake salinity level based on SVM: A case from Badain Jaran desert in Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 114-118.
[14] DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
[15] CHENG Gong, ZHU Jiawei, MAO Xiancheng. Remote sensing prospecting prediction in periphery of the Jinchuan copper-nickel deposit based on ASTER data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech