Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 114-118     DOI: 10.6046/gtzyyg.2016.04.18
Technology Application |
Extraction of remote sensing information for lake salinity level based on SVM: A case from Badain Jaran desert in Inner Mongolia
DIAO Shujuan1, LIU Chunling2, ZHANG Tao2, HE Peng2, GUO Zhaocheng2, TU Jienan2
1. National Geological Library of China, Beijing 100083, China;
2. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(4078 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

According to the problems of remote sensing information extraction in lake salinity level of Badain Jaran desert, the authors put forward a method based on support vector machine (SVM). In this paper, the authors adopted Landsat8 OLI remote sensing image as the data source, completed the image preprocessing such as geometric correction, image registration and mosaicking. With the help of the RS and GIS technology, the authors successfully extracted the information of lake salinity levels of the Badain Jaran desert. The results show that the proposed method can effectively solve the problems of less samples and the information extraction of lake salinity levels when the spectral information is confused, and hence has the reference value and can be promoted to other similar situations.

Keywords aircraft targets      texture features      change detection      knowledge driven     
:  TP79  
Issue Date: 20 October 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIANG Shengwen
WEN Gongjian
GAO Feng
Cite this article:   
XIANG Shengwen,WEN Gongjian,GAO Feng. Extraction of remote sensing information for lake salinity level based on SVM: A case from Badain Jaran desert in Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 114-118.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.04.18     OR     https://www.gtzyyg.com/EN/Y2016/V28/I4/114

[1] 梁永平,赵春红,唐春雷,等.北方岩溶区水文地质环境调查进展——以北京西山岩溶区为例[J].中国地质调查,2015,2(8):1-8. Liang Y P,Zhao C H,Tang C L,et al.Progress of hydrogeology and environmental geology survey in Karst Area of northern China:An example from karst area in western hills of Beijing[J].Geology Survey of China,2015,2(8):1-8.
[2] 苏春田,潘晓东,李兆林,等.云南广南岩溶区水文地质环境地质调查进展[J].中国地质调查,2015,2(8):9-16. Su C T,Pan X D,Li Z L,et al.Progress of hydrogeology and environment geology survey in Guangnan karst area,Yunnan province[J].Geology Survey of China,2015,2(8):9-16.
[3] Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
[4] Pal M,Mather P M.Support vector machines for classification in remote sensing[J].International Journal of Remote Sensing,2005,26(5):1007-1011.
[5] Pal M.Support vector machine-based feature selection for land cover classification:A case study with DAIS hyperspectral data[J].International Journal of Remote Sensing,2006,27(14):2877-2894.
[6] Carrão H,Gonçalves P,Caetano M.Contribution of multispectral and multitemporal information from MODIS images to land cover classification[J].Remote Sensing of Environment,2008,112(3):986-997.
[7] Nemmour H,Chibani Y.Fuzzy neural network architecture for change detection in remotely sensed imagery[J].International Journal of Remote Sensing,2006,27(4):705-717.
[8] 王朔琛.基于半监督支持向量机的图像分类方法研究[D].西安:陕西师范大学,2015. Wang S C.Research on Image Classification Based on Semi Supervise Support Vector Machine[D].Xi'an:Shaanxi Normal University,2015.
[9] 李驰.基于支持向量机的超分辨率图像重建[J].激光杂志,2016,37(1):138-141. Li C.Super resolution image reconstruction based on support vector machine[J].Laser Journal,2016,37(1):138-141.
[10] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003. Wu Z.Control Engineering of Sand Physiognomy[M].Beijing:Science Press,2003.
[11] 丁宏伟,王贵玲.巴丹吉林沙漠湖泊形成的机理分析[J].干旱区研究,2007,24(1):1-7. Ding H W,Wang G L.Study on the formation mechanism of the lakes in the Badain Juran desert[J].Arid Zone Research,2007,24(1):1-7.

[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[4] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[5] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[6] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[7] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[8] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[9] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[10] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[11] Zhan ZHAO, Wang XIA, Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
[12] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[13] Xinran ZHU, Bo WU, Qiang ZHANG. An improved CVAPS method for automatic updating of LUCC classification[J]. Remote Sensing for Land & Resources, 2018, 30(2): 29-37.
[14] Guanghui WANG, Jianlei LI, Huabin WANG, Huachao YANG. Change detection based on adaptive fusion of multiple features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 93-99.
[15] Jiaojiao DIAO, Xinye GONG, Mingshi LI. A comprehensive change detection method for updating land cover data base[J]. Remote Sensing for Land & Resources, 2018, 30(1): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech