Please wait a minute...
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 206-211     DOI: 10.6046/gtzyyg.2018.04.31
Design and construction of the typical ground target spectral information system
Donghui ZHANG, Yingjun ZHAO, Kai QIN
National Key Laboratory of Remote Sensing Information and Imagery Analyzing Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
Download: PDF(3376 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The spectral data in existing object spectrum library have some disadvantages, such as single data acquisition sensor; unreasonable ground objects classification and no efficient integration of the latest spectral analysis models. In order to solve these problems, this paper proposes a typical target ground spectral information system. The ground spectral data acquisition, analysis, processing and integrated information extraction are designed and integrated, and the information expression of the system is constructed based on the client layer and the server layer (C/S) structure. Taking the extraction of rocks, mines, and heavy metals from soils as an example, the authors conducted a demonstration study. The research shows that the system has achieved the goal of efficient, fast and accurate excavation of the rich ground information contained in the spectra, thus providing technical support for land identification, resource exploration and ecological environment evaluation.

Keywords typical object      object spectral      information system      hyperspectral remote sensing     
:  P208  
Issue Date: 07 December 2018
E-mail this article
E-mail Alert
Articles by authors
Donghui ZHANG
Yingjun ZHAO
Cite this article:   
Donghui ZHANG,Yingjun ZHAO,Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
URL:     OR
Fig.1  Architecture of the typical ground target spectral information system
Fig.2  Data table structure and table relation diagram of the typical ground target spectral information system
Fig.3  Extraction of spectral parameters from plant spectral analysis system
Fig.4  Soil spectral processing results under the system support
[1] 卞小林, 邵芸, 张风丽 , 等. 典型地物微波特性知识库的设计与实现[J]. 国土资源遥感, 2015,27(4):189-194.doi: 10.6046/gtzyyg.2015.04.29.
doi: 10.6046/gtzyyg.2015.04.29 url:
[1] Bian X L, Shao Y, Zhang F L , et al. Construction of the library of targets microwave properties[J]. Remote Sensing for Land and Resources, 2015,27(4):189-194.doi: 10.6046/gtzyyg.2015.04.29.
[2] 张妍, 薄立群, 路兴昌 . 长春净月潭地物波谱数据库的研究与开发[J]. 遥感信息, 2002,17(2):25-27.
doi: 10.3969/j.issn.1000-3177.2002.02.006 url:
[2] Zhang Y, Bo L Q, Lu X C . Design and development of object spectrum database in Jingyuetan of Changchun[J]. Remote Sensing Information, 2002,17(2):25-27.
[3] 田振坤, 刘素红, 傅莺莺 . 我国典型地物标准波谱数据库数据管理子系统设计与开发[J]. 计算机工程与应用, 2005,41(1):210-213.
doi: 10.3321/j.issn:1002-8331.2005.01.064 url:
[3] Tian Z K, Liu S H, Fu Y Y . Design and realization of spectral data management in the standard spectral knowledge base[J]. Computer Engineering and Applications, 2005,41(1):210-213.
[4] 方静, 刘文清, 李素文 . 基于Web的痕量气体特征光谱数据库[J]. 计算机工程, 2008,34(5):260-262.
[4] Fang J, Liu W Q, Li S W . Web-based chararcteristic spectral data-base of trace gas[J]. Computer Engineering, 2008,34(5):260-262.
[5] 万余庆, 张凤丽, 闫永忠 . 矿物岩石高光谱数据库分析[J]. 地球信息科学, 2001,3(3):54-58.
doi: 10.3969/j.issn.1560-8999.2001.03.015 url:
[5] Wan Y Q, Zhang F L, Yan Y Z . The analysis of mineral and rock’s hyper-spectral library[J]. Geo-information science, 2001,3(3):54-58.
[6] 李新双 . 光谱数据库的设计及光谱匹配技术研究[D]. 武汉:武汉大学, 2005.
[6] Li X S . Design of Spectral Database and Research on Spectral Matching Technology[D]. Wuhan:Wuhan University, 2005.
[7] 田庆久, 王世新, 王乐意 , 等. 典型地物标准波谱数据库系统设计[J]. 遥感技术与应用, 2003,18(4):185-190.
doi: 10.3969/j.issn.1004-0323.2003.04.001 url:
[7] Tian Q J, Wang S X, Wang L Y , et al. Remote sensing standardized spectral database system design[J]. Remote Sensing Technology and Application, 2003,18(4):185-190.
[8] 范俊甫 . 兖州矿区典型地物波谱数据库建设与应用研究[D]. 泰安:山东科技大学, 2011.
[8] Fan J F . Study on Construction and Implementation of Typical Ground Object Spectrum Database in Fuzhou Mining Area[D]. Taian:Shandong University of Science and Technology, 2011.
[9] 李少鹏 . 新疆典型荒漠植物光谱数据库系统设计与实现[D]. 乌鲁木齐:新疆农业大学, 2013.
[9] Li S P . The Design and Development of Xinjiang Typical Desert Plants Spectral Database System[D]. Urumqi:Xinjiang Agricultural University, 2013.
[10] 李少鹏, 李霞, 黄祥志 , 等. 新疆典型荒漠植物光谱数据库构建[J]. 新疆农业科学, 2013,50(6):1128-1136.
[10] Li S P, Li X, Huang X Z , et al. Spectrum database construction of typical desert plants in Xinjiang[J]. Xinjiang Agricultural Sciences, 2013,50(6):1128-1136.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[6] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[7] Yaping LI, Xiaoping LU, Hang ZHANG, Zezhong LU, Shunyao WANG. Soil erosion in Huaihe River Basin based on GIS and RUSLE:Exemplified by Shangcheng County, Xinyang City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 243-249.
[8] Jing CUI, Xinfeng DONG, Rui DING, Shimin ZHANG, Conghe WANG, Hengxin LU, Yanyun SUN. Stratigraphic division of loess along loess profile based on hyperspectral remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 202-207.
[9] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
[10] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
[11] LIN Na, YANG Wunian, WANG Bin. Pixel un-mixing for hyperspectral remote sensing image based on kernel method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 14-20.
[12] CHAI Ying, RUAN Renzong, CHAI Guowu, FU Qiaoni. Species identification of wetland vegetation based on spectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 86-90.
[13] DAI Xiaoai, JIA Hujun, ZHANG Xiaoxue, WU Fenfang, GUO Shouheng, YANG Wunian, YANG Ye. Identification of hyperspectral features for subalpine typical vegetation in the upper reaches of the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 174-180.
[14] HE Hao, SHEN Yonglin, LIU Xiuguo, MA Li. Spatial-spectral constrained graph-based semi-supervised classification for hyperspectral image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 31-36.
[15] SHAO Qiufang, PENG Peihao, HUANG Jie, LIU Zhi, SUN Xiaofei, SHAO Huaiyong. Monitoring eco-environmental vulnerability in Anning River Basin in the upper reaches of the Yangtze River using remote sensing techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 175-181.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech