Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (s1) : 132-136     DOI: 10.6046/gtzyyg.2017.s1.22
Orginal Article |
Application of domestic high-resolution satellite imagery data to the investigation of surface collapse in the Tiechanggou coal mine of Xinjiang
MEI Junjun1, XU Suning1, PENG Ling1, XING Gulian2, LI Wenjuan1
1. China Institute of Geo-Environment Monitoring, Beijing 100081, China;
2. Beijing Esky Tec Ltd., Beijing 100085, China
Download: PDF(1026 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The problem which has become serious over time is coal mine zone’s surface collapse and ground crevice. Therefore, making a thorough investigation of the type, size and distribution of geological disasters in the mining area and analyzing the causes, damage degree and development trend of the geological disasters are very important for the green mine construction. With the ZY1-02C and GF-1/2 data as the basis, on the basis of the characteristics of known subsidence area and the establishment of remote sensing imagery interpretation system, and by using the methods of human-computer interactive interpretation, the authors delineated the boundary, the direction and the influence area of the ground collapse area of the Tiechanggou mine in Xinjiang. The analysis shows that the data obtained by domestic high-resolution satellites of ZY1-02C HR, GF-1 and GF-2 can effectively guarantee the remote sensing precise identification of large and medium-sized ground subsidence in the mining area. The domestic high-resolution satellite ZY1-02C and GF-1 can meet the 1∶50 000 scale, and the GF-2 satellite remote sensing data can meet the 1∶25 000 scale. With the home-made satellites of China, the data resources are abundant, which provide important data guarantee for remote sensing monitoring of mine geological disasters in the future.
Keywords GF-1      multi-camera mosaic imaging      self-adaptive matching      geometric offset statistics     
Issue Date: 24 November 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Jie
XIE Yong
WU Guoxi
YU Zhengzheng
QIAN Yuelei
GUAN Xiaoguo
Cite this article:   
HAN Jie,XIE Yong,WU Guoxi, et al. Application of domestic high-resolution satellite imagery data to the investigation of surface collapse in the Tiechanggou coal mine of Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 132-136.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.s1.22     OR     https://www.gtzyyg.com/EN/Y2017/V29/Is1/132
[1] 梨来福,王秀丽.SPOT-5卫星遥感数据在煤矿塌陷区监测中的应用[J].矿山测量,2008(2):45-47.
Li L F,Wang X L.Application of the SPOT-5 satellite remote-sensing data in monitoring the coalmine subsidence area[J].Mine Surveying,2008(2):45-47.
[2] 彭苏萍,王 磊,孟召平,等.遥感技术在煤矿区积水塌陷动态监测中的应用——以淮南矿区为例[J].煤炭学报,2002,27(4):374-378.
Peng S P,Wang L,Meng Z P,et al.Monitoring the seeper subside in coal district by the remote sensing:examples from Huainan coal district[J].Journal of China Coal Society,2002,27(4):374-378.
[3] 王行风,杜培军,孙久远.兖济滕矿区地表塌陷遥感信息解译研究[J].水土保持研究,2007,14(5):230-232,235.
Wang X F,Du P J,Sun J Y.Extracting of remote sensing information of mining subsiding in Yanjiteng area[J].Research of Soil and Water Conservation,2007,14(5):230-232,235.
[4] 汪宝存,苗 放,晏明星,等.基于遥感技术的开滦煤矿地面塌陷积水动态监测[J].国土资源遥感,2007,19(3):94-97. doi:10.6046/gtzyyg.2007.03.22.
Wang B C,Miao F,Yan M X,et al.The dynamic detection of ground collapse water log in the Kailuan coal mine based on the remote sensing technique[J].Remote Sensing for Land and Resources,2007,19(3):94-97. doi:10.6046/gtzyyg.2007.03.22.
[5] 许长辉,高井祥,王 坚,等.多源多时相遥感数据融合在煤矿塌陷地中应用研究[J].水土保持研究,2008,15(1):92-95.
Xu C H,Gao J X,Wang J,et al.Application of RS data fusion of multi-source and multi-temporal in coal mine subsidence[J].Research of Soil and Water Conservation,2008,15(1):92-95.
[6] 王钦军,陈 玉,蔺启忠.矿山地面塌陷的高分辨率遥感识别与边界提取[J].国土资源遥感,2011,23(3):113-116. doi:10.6046/gtzyyg.2011.03.20.
Wang Q J,Chen Y,Lin Q Z.Surface collapse identification and its boundary extraction using high resolution remote sensing[J].Remote Sensing for Land and Resources,2011,23(3):113-116. doi:10.6046/gtzyyg.2011.03.20.
[7] 李成尊,聂洪峰,汪 劲,等.矿山地质灾害特征遥感研究[J].国土资源遥感,2005,17(1):45-48. doi:10.6046/gtzyyg.2005.01.11.
Li C Z,Nie H F,Wang J,et al.A remote sensing study of characteristics of geological disasters in a mine[J].Remote Sensing for Land and Resources,2005,17(1):45-48. doi:10.6046/gtzyyg.2005.01.11.
[8] 张敦虎,卢中正,强建华,等.地面塌陷特征及其遥感识别方法研究[J].地质灾害与环境保护,2009,20(3):8-12.
Zhang D H,Lu Z Z,Qiang J H,et al.Characteristic of land collapse and its identification method in remote sensing image[J].Journal of Geological Hazards and Environment Preservation,2009,20(3):8-12.
[9] Wang J A,Shang X C,Ma H T.Investigation of catastrophic ground collapse in Xingtai gypsum mines in China[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1480-1499.
[10] 陈文平,范英霞,韩小朋,等.中巴资源卫星影像HR数据在煤矿矿区地面塌陷调查中的应用[J].测绘与空间地理信息,2012,35(2):80-83.
Chen W P,Fan Y X,Han X M,et al.Application of CBERS HR image data in investigation of surface collapse in coal mine zone[J].Geomatics and Spatial Information Technology,2012,35(2):80-83.
[11] 王瑞国.基于WorldView-2数据的乌东煤矿地质灾害遥感调查及成因分析[J].国土资源遥感,2016,28(2):132-138. doi:10.6046/gtzyyg.2016.02.21.
Wang R G.Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on WorldView-2 data[J].Remote Sensing for Land and Resources,2016,28(2):132-138. doi:10.6046/gtzyyg.2016.02.21.
[1] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[2] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[3] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[4] Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set[J]. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
[5] Ning WANG, Jiahua CHENG, Hanye ZHANG, Hongjie CAO, Jun LIU. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42.
[6] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[7] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[8] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[9] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[10] Yilin JIA, Wen ZHANG, Lingkui MENG. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 95-100.
[11] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[12] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
[13] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[14] Lingyu YIN, Xianlin QIN, Guifen SUN, Shuchao LIU, Xiaofeng ZU, Xiaozhong CHEN. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land & Resources, 2018, 30(1): 95-101.
[15] CHENG Yang, TANG Jiansheng, SU Chuntian, YANG Yang, LUO Fei. Application of the GF-1 data to karst hydrogeological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 58-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech