Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 200-205     DOI: 10.6046/gtzyyg.2018.04.30
|
Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique
Xiaobo ZHANG1, Xuesheng ZHAO2, Daqing GE3, Bin LIU3, Ling ZHANG3, Man LI3, Yan WANG3
1. School of Ecology and Environment, Institute of Disaster Prevention, Langfang 101601, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing for Land and Resources, Beijing 100083, China
Download: PDF(7268 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper presents the subsidence results of the Huainan coal mine from Sentinel-1 TOPS images during the period between November 3, 2015 and March 14, 2016 using Stacking technique. The high accuracy coregistration comprising three steps was firstly used to get differential interferograms without phase jump. Then the trend phase was removed by polynomial fitting, and the subsidence rate was retrieved based on the least squares linear regression method. The subsidence velocity map shows that there are several subsidence centers mainly distributed in the west and the north of the research region. The maximum subsidence rate is 80~90 cm/a, and the subsidence is inhomogeneous spatially. The mining subsidence of the study area has the characteristics of high gradients varying from 10 to 80 cm/a, with small subsidence coverage for only 3.13% of the total area. From the differential interferograms the authors found that the deformation magnitude is variable in different observation spans, which implies the nonlinear characteristics of the mine.

Keywords Sentinel-1      TOPS mode      Stacking technique      Huainan coal mine      ground subsidence     
:  P642  
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaobo ZHANG
Xuesheng ZHAO
Daqing GE
Bin LIU
Ling ZHANG
Man LI
Yan WANG
Cite this article:   
Xiaobo ZHANG,Xuesheng ZHAO,Daqing GE, et al. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique[J]. Remote Sensing for Land & Resources, 2018, 30(4): 200-205.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.30     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/200
Fig.1  Data processing flowchart
Fig.2  Differential interferograms of before and after phase jumps elimination
Fig.3  Subsidence velocity of the research area
Fig.4  Subsidence area statistics in study area
Fig.5  Differential interferograms of the northeastern region of the Huainan coal mine in different periods
[1] Nestbitt A. Subsidence monitoring West Cliff Colliery longwall 5A4[C]// Association of Public Authority Surveyors.Wollongong:APAS, 2003: 133-139.
[2] 李楠, 王磊 . 基于D-InSAR技术的老采空区稳定性监测研究[J]. 矿山测量, 2016,44(3):1-4.
doi: 10.3969/j.issn.1001-358X.2016.03.001 url: http://d.wanfangdata.com.cn/Periodical/kscl201603001
[2] Li N, Wang L . Research of coal mining subsidence monitoring based on D-InSAR technology[J]. Mine Surveying, 2016,44(3):1-4.
[3] 张飞 . 基于DInSAR技术的淮南采煤沉陷区地面沉降监测研究[D]. 南京:南京大学, 2012.
[3] Zhang F . Study on DInSAR Technology of Monitoring Land Subsidence in Huainan Mining Area[D]. Nanjing:Nanjing University, 2012.
[4] 刘文倩 . InSAR测量技术在淮南矿区地面沉降监测中的应用[D]. 合肥:合肥工业大学, 2012.
[4] Liu W Q . An Application of InSAR Technology in Ground Subsidence Monitoring in Huainan Coal-mining Area[D]. Hefei:Hefei University of Technology, 2012.
[5] Biggs J, Wright T, Lu Z , et al. Multi-interferogram method for measuring interseismic deformation:Denali Fault, Alaska[J]. Geophysical Journal International, 2007,170(3):1165-1179.
doi: 10.1111/j.1365-246X.2007.03415.x url: http://blackwell-synergy.com/doi/abs/10.1111/gji.2007.170.issue-3
[6] Zhao Q, Lin H, Jiang L M. Ground deformation monitoring in Pearl River Delta region with Stacking D-InSAR technique[C]// Proceedings of SPIE,Geoinformatics 2008 and Joint Conference on GIS and Built Environment:Monitoring and Assessment of Natural Resources and Environments. 2008,714513:1-9.
[7] Geudtner D, Torres R, Snoeij P, et al. Sentinel-1 system[C]// 2014 10th European Conference on Synthetic Aperture Radar (EUSAR).Berlin:VDE, 2014: 1-3.
[8] Berger M, Moreno J, Johannessen J A , et al. ESA’s sentinel missions in support of earth system science[J]. Remote Sensing of Environment, 2012,120:84-90.
doi: 10.1016/j.rse.2011.07.023 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571200065X
[9] Zan F D, Guarnieri A M M. TOPSAR:Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(9):2352-2360.
doi: 10.1109/TGRS.2006.873853 url: http://ieeexplore.ieee.org/document/1677745/
[10] Gabriel A K, Goldstein R M, Zebker H A . Mapping small elevation changes over large areas:Differential Radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989,94(B7):9183-9191.
doi: 10.1029/JB094iB07p09183 url: http://doi.wiley.com/10.1029/JB094iB07p09183
[11] Wright T, Parsons B, Fielding E . Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite Radar interferometry[J]. Geophysical Research Letters, 2001,28(10):2117-2120.
doi: 10.1029/2000GL012850 url: http://doi.wiley.com/10.1029/2000GL012850
[12] Ferretti A, Prati C, Rocca F . Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661 url: http://ieeexplore.ieee.org/document/898661/
[13] Berardino P, Fornaro G, Lanari R , et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792 url: http://ieeexplore.ieee.org/document/1166596/
[14] Bara M, Scheiber R, Broquetas A , et al. Interferometric SAR signal analysis in the presence of squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2164-2178.
doi: 10.1109/36.868875 url: http://ieeexplore.ieee.org/document/868875/
[15] Prats P, Marotti L, Wollstadt S. Investigation on TOPS interferometry with TerraSAR-X [C]//2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu:IEEE, 2010.
[16] Scheiber R, Moreira A . Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2179-2191.
doi: 10.1109/36.868876 url: http://ieeexplore.ieee.org/document/868876/
[17] Ng A H M, Ge L L, Li X J , et al. Monitoring ground deformation in Beijing,China with persistent scatterer SAR interferometry[J]. Journal of Geodesy, 2012,86(6):375-392.
doi: 10.1007/s00190-011-0525-4 url: http://link.springer.com/10.1007/s00190-011-0525-4
[18] 闫建伟, 汪云甲, 朱勇 . 基于D-InSAR技术的淮南矿区地面沉陷监测[J]. 工矿自动化, 2011,37(8):48-51.
url: http://www.cqvip.com/QK/95769A/201108/38872513.html
[18] Yan J W, Wang Y J, Zhu Y . Monitoring of surface subsidence based on D-InSAR technology in Huainan mining area[J]. Industry and Mine Automation, 2011,37(8):48-51.
[1] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[2] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[3] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[4] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[5] SUN Chao, CHEN Zhenjie, WANG Beibei. Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou[J]. Remote Sensing for Land & Resources, 2020, 32(4): 154-162.
[6] Jingjian LIU, Hongzhong LI, Cui HUA, Yuman SUN, Jinsong CHEN, Yu HAN. Extraction of early paddy rice area in Lingao County based on Sentinel-1A data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 191-199.
[7] Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway[J]. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
[8] Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 204-209.
[9] Zechao BAI, Baocun WANG, Guowang JIN, Qing XU, Hongmin ZHANG, Hui LIU. Applicability analysis of ground deformation monitoring in mining area by Sentinel - 1A data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 210-217.
[10] CHEN Jiwei, ZENG Qiming, JIAO Jian, ZHAO Binchen. SBAS time series analysis technique based on Sentinel-1A TOPS SAR images: A case study of Yellow River Delta[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 82-87.
[11] SUN Xiaopeng, LU Xiaoya, WEN Xuehu, ZHEN Yan, WANG Lei. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 123-129.
[12] YANG Chengsheng, LIU Yuanyuan, AO Meng. Study of land subsidence and groundwater activity using SBAS time-series analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 127-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech