Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 253-261     DOI: 10.6046/zrzyyg.2020310
|
Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City
LIU Chunting1(), FENG Quanlong2, JIN Dingjian3, SHI Tongguang1, LIU Jiantao1(), ZHU Mingshui1
1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
2. College of Land Science and Technology, China Agriculture University, Beijing 100083, China
3. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(4741 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

An impervious layer is an important indicator of human activities. Timely and accurate information of impervious layers is of great significance for the protection of the ecological environment. Taking the Yellow River Delta (Dongying City) as the study area, this study explores a novel extraction method of impervious layers by combining the random forest classification with Sentinel-1/2 data. According to comparative experiments, the confusion between dark and light impervious layers and bare soil can be reduced through the combination of the random forest algorithm with surface reflectance characteristics, texture characteristics, and backscatter coefficient, thus effectively improving the estimation accuracy of impervious layers (overall accuracy: 93.37%, Kappa coefficient: 0.925 8). The results of this study reveal that the random forest algorithm combined with Sentinel-1/2 data is a promising approach in the information extraction of impervious layers, which will provide a reference for the remote sensing monitoring of the Yellow River Delta through the integration of multi-source data.

Keywords Dongying City      impervious layer      Sentinel-2      Sentinel-1      texture      random forest     
ZTFLH:  TP79  
Corresponding Authors: LIU Jiantao     E-mail: ctliu96@163.com;liujiantao18@sdjzu.edu.cn
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chunting LIU
Quanlong FENG
Dingjian JIN
Tongguang SHI
Jiantao LIU
Mingshui ZHU
Cite this article:   
Chunting LIU,Quanlong FENG,Dingjian JIN, et al. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020310     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/253
Fig.1  Image of Sentinel-2 B4(R),B3(G),B2(B) bands in the study area
光谱波段 中心波
长/nm
波段类型 空间分
辨率/m
B2 490 蓝光波段(Blue) 10
B3 560 绿光波段(Green)
B4 665 红光波段(Red)
B8 842 近红外波段(NIR)
B5 705 植被红边波段(VRE) 20
B6 740
B7 783
B8A 865
B11 1 610 短波红外波段(SWIR)
B12 2 190
B1 443 沿海气溶胶波段(CA) 60
B9 945 水蒸汽波段(WV)
B10 1 375 短波红外卷云波段(SWIR-C)
Tab.1  Band information of Sentinel-2
Fig.2  Flowchart of research
土地类型 分类标准 训练样
本数量
验证样
本数量
亮不透水层 屋顶、厂房等用较新的水泥或者金属、玻璃、陶瓷等明亮材料建造的不透水层 700 500
暗不透水层 屋顶、道路、停车场等用沥青、混凝土及其他深色的、低光谱反射率材料建造的不透水层 700 500
有作物耕地 生长有农作物或其他经济作物的土地 700 500
空闲耕地 轮歇地、休耕地等临时没有作物的耕地 700 500
大棚用地 种植蔬菜、瓜果、林木等以塑料、薄膜材质覆盖的耕地 350 250
林地 生长有乔木、灌木等林木的土地 700 500
水域 海洋、河流、湖泊、水库、沟渠等水体 700 500
滩涂 海洋、湖泊、河流等高潮位与低潮位之间的滩地 700 500
盐田 生产盐的土地,包括晒盐场所、盐池用地 700 500
未利用地 城镇、村庄、工厂等范围内未使用的土地,包括由于房屋拆迁还未利用的土地、正在施工的土地 280 200
Tab.2  Classification scheme and number of samples(个)
Fig.3  Distribution of sampling points
土地类型 亮不透水层 暗不透水层 有作物耕地 空闲耕地 大棚用地 林地 水域 滩涂 盐田 未利用地
亮不透水层 490 4 1 0 1 0 0 0 0 4
暗不透水层 5 475 3 3 1 0 0 0 0 13
有作物耕地 0 0 477 0 1 21 1 0 0 0
空闲耕地 11 6 0 467 0 0 0 0 0 16
大棚用地 5 6 0 0 239 0 0 0 0 0
林地 0 0 68 0 0 417 15 0 0 0
水域 0 1 3 0 3 0 491 1 1 0
滩涂 9 4 3 25 0 0 3 452 4 0
盐田 0 0 0 0 0 0 3 1 496 0
未利用地 36 5 0 8 0 0 0 0 0 151
Tab.3  Confusion matrices for classification
Fig.4  Extracted result of impervious surface
方案编号 特征组合
A 地表反射率特征+纹理特征
B 多极化(VV和VH)后向散射系数
C(本文方案) 地表反射率特征+纹理特征+多极化(VV和VH)后向散射系数
Tab.4  Combination schemes of Sentinel data
类别 方案A 方案B 方案C
PA/% UA/% PA/% UA/% PA/% UA/%
亮不透水层 98.00 87.66 38.40 46.15 98.00 88.13
暗不透水层 93.20 92.09 47.20 39.80 95.00 94.81
有作物耕地 93.60 82.54 38.80 35.93 95.40 85.95
空闲耕地 90.40 91.50 39.60 42.86 93.40 92.84
大棚用地 96.40 96.79 18.00 24.59 95.60 97.55
林地 79.00 92.72 45.20 40.36 83.40 95.21
水域 98.20 95.90 64.40 58.02 98.20 95.71
滩涂 89.40 99.55 33.80 36.74 90.40 99.56
盐田 99.40 99.00 43.00 38.95 99.20 99.00
未利用地 74.50 80.11 8.50 13.18 75.50 82.07
总体精度/% 92.04 40.76 93.37
Kappa系数 0.911 0 0.335 8 0.925 8
Tab.5  Statistics of classification accuracy
Fig.5  Classification results of different schemes
分类算法 随机森林分类 支持向量机分类 决策树分类
总体精度/% 93.37 93.19 87.79
Kappa系数 0.925 8 0.923 8 0.863 5
Tab.6  Comparison of classification accuracy of RF, SVM and CART
[1] Arnold L C, Gibbons C J. Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of The American Planning Association, 1996, 62(2):243-258.
doi: 10.1080/01944369608975688 url: http://www.tandfonline.com/doi/abs/10.1080/01944369608975688
[2] Leinenkugel P, Esch T, Kuenzer C. Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data[J]. Remote Sensing of Environment, 2011, 115(12):3007-3019.
doi: 10.1016/j.rse.2011.06.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711002288
[3] Weng Q H, Hu X F. Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2397-2406.
doi: 10.1109/TGRS.2008.917601 url: http://ieeexplore.ieee.org/document/4559748/
[4] Liu Z H, Wang Y L, Li Z G, et al. Impervious surface impact on water quality in the process of rapid urbanization in Shenzhen,China[J]. Environmental Earth Sciences, 2013, 68(8):2365-2373.
doi: 10.1007/s12665-012-1918-2 url: http://link.springer.com/10.1007/s12665-012-1918-2
[5] Ma Q, He C Y, Wu J G, et al. Quantifying spatiotemporal patterns of urban impervious surfaces in China:An improved assessment using nighttime light data[J]. Landscape and Urban Planning, 2014, 130:36-49.
doi: 10.1016/j.landurbplan.2014.06.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204614001510
[6] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for citiest[J]. International Journal of Remote Sensing, 1995, 16(12):2165-2185.
doi: 10.1080/01431169508954549 url: https://www.tandfonline.com/doi/full/10.1080/01431169508954549
[7] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84(4):493-505.
doi: 10.1016/S0034-4257(02)00136-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702001360
[8] 周存林, 徐涵秋. 福州城区不透水面的光谱混合分析与识别制图[J]. 中国图象图形学报, 2007(5):875-881.
[8] Zhou C L, Xu H Q. A spectral mixture analysis and mapping of impervious surfaces in built-up land of Fuzhou City[J]. Journal of Image Graphics, 2007(5):875-881.
[9] Carlson T N, Arthur S T. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology:A satellite perspective[J]. Global & Planetary Change, 2000, 25(1):49-65.
[10] 徐涵秋. 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008(11):1150-1153.
[10] Xu H Q. A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008(11):1150-1153.
[11] Liu C, Shao Z, Chen M, et al. MNDISI:A multi-source composition index for impervious surface area estimation at the individual city scale[J]. Remote Sensing Letters, 2013, 4(8):803-812.
doi: 10.1080/2150704X.2013.798710 url: http://www.tandfonline.com/doi/abs/10.1080/2150704X.2013.798710
[12] 廖明生, 江利明, 林珲, 等. 基于CART集成学习的城市不透水层百分比遥感估算[J]. 武汉大学学报(信息科学版), 2007(12):1099-1102.
[12] Liao M S, Jiang L M, Lin H, et al. Estimating urban impervious surface percent using boosting as a refinement of CART analysis[J]. Geomatics and Information Science of Wuhan University, 2007(12):1099-1102.
[13] 李晓宁, 张友静, 佘远见, 等. CART集成学习方法估算平原河网区不透水面覆盖度[J]. 国土资源遥感, 2013, 25(4):174-179.doi: 10.6046/gtzyyg.2013.04.28.
doi: 10.6046/gtzyyg.2013.04.28
[13] Li X N, Zhang Y J, She Y J, et al. Estimation of impervious surface percentage of river network regions using an ensemble leaning of CART analysis[J]. Remote Sensing for Land and Resources, 2013, 25(4):174-179.doi: 10.6046/gtzyyg.2013.04.28.
doi: 10.6046/gtzyyg.2013.04.28
[14] Sung C Y, Yi Y J, Li M H. Impervious surface regulation and urban sprawl as its unintended consequence[J]. Land Use Policy, 2013, 32:317-323.
doi: 10.1016/j.landusepol.2012.10.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837712001895
[15] 程熙, 沈占锋, 骆剑承, 等. 利用混合光谱分解与SVM估算不透水面覆盖率[J]. 遥感学报, 2011, 15(6):1228-1241.
[15] Cheng X, Shen Z F, Luo J C, et al. Estimation impervious surface based on comparison of spectral mixture analysis and support vector machine methods[J]. Remote Sensing, 2011, 15(6):1228-1241.
[16] Sun Z C, Guo H D, Li X W, et al. Estimating urban impervious surfaces from Landsat 5 TM imagery using multilayer perceptron neural network and support vector machine[J]. Journal of Applied Remote Sensing, 2011, 5(1):053501.
doi: 10.1117/1.3539767 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3539767
[17] 刘莹, 孟庆岩, 王永吉, 等. 基于特征优选与支持向量机的不透水面覆盖度估算方法[J]. 地理与地理信息科学, 2018, 34(1):24-31.
[17] Liu Y, Meng Q Y, Wang Y J, et al. A method for estimating impervious surface percentage based on feature optimization and SVM[J]. Geography and Geo-Information Science, 2018, 34(1):24-31.
[18] 骆成凤. 遗传算法优化的BP神经网络城市不透水层百分比估算[J]. 测绘科学, 2011, 36(1):48-50.
[18] Luo C F. Estimating urban impervious surface percentage with BP neural network based on genetic algorithm[J]. Science of Surveying and Mapping, 2011, 36(1):48-50.
[19] Hu X F, Weng Q H. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks[J]. Remote Sensing of Environment, 2009, 113(10):2089-2102.
doi: 10.1016/j.rse.2009.05.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709001655
[20] Zhang Y Z, Zhang H S, Lin H, et al. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014, 141:155-167.
doi: 10.1016/j.rse.2013.10.028 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713003969
[21] Shao Z F, Fu H Y, Fu P, et al. Mapping urban impervious surface by fusing optical and SAR data at the decision level[J]. Remote Sensing, 2016, 8(11),945-965.
doi: 10.3390/rs8110945 url: http://www.mdpi.com/2072-4292/8/11/945
[22] Guo H D, Yang H N, Sun Z C, et al. Synergistic use of optical and PolSAR imagery for urban impervious surface estimation[J]. Photogrammetric Engineering and Remote Sensing, 2014, 80(1):91-102.
doi: 10.14358/PERS.80.1.91 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=80&issue=1&spage=91
[23] Deng C B, Wu C S. Examining the impacts of urban biophysical compositions on surface urban heat island:A spectral unmixing and thermal mixing approach[J]. Remote Sensing of Environment, 2013, 131:262-274.
doi: 10.1016/j.rse.2012.12.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712004865
[24] Weng Q H. Remote sensing of impervious surfaces in the urban areas:Requirements,methods,and trends[J]. Remote Sensing of Environment, 2012, 117:34-49.
doi: 10.1016/j.rse.2011.02.030 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711002811
[25] Zhang Y Z, Zhang H S, Lin H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014, 141:155-167.
doi: 10.1016/j.rse.2013.10.028 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713003969
[26] 唐廷元, 付波霖, 何索云, 等. 基于GF-1和Sentinel-1A的漓江流域典型地物信息提取[J]. 遥感技术与应用, 2020, 35(2):448-457.
[26] Tang T Y, Fu B L, He S Y, et al. Identification of typical land features in the Lijiang River Basin with fusion optics and Radar[J]. Remote Sensing Technology and Application, 2020, 35(2):448-457.
[27] 张鸿生, 林殷怡, 王挺, 等. 融合光学与雷达遥感数据的城市不透水面提取方法[J]. 地理与地理信息科学, 2018, 34(3):39-46.
[27] Zhang H S, Lin Y Y, Wang T, et al. Fusing optical and SAR remote sensing data for urban impervious surface estimation[J]. Geography and Geo-Information Science, 2018, 34(3):39-46.
[28] Masound M, Bahram S, Fariba M, et al. Random forest wetland classification using ALOS-2L-band,RADARSAT-2C-band and TerraSAR-X imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:13-31.
doi: 10.1016/j.isprsjprs.2017.05.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271617300850
[29] Zhang H S, Zhang Y Z, Lin H. A comparison study of impervious surfaces estimation using optical and SAR remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:148-156.
doi: 10.1016/j.jag.2011.12.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243412000086
[30] Zhang H S, Li J, Wang T, et al. A manifold learning approach to urban land cover classification with optical and Radar data[J]. Landscape and Urban Planning, 2018, 172:11-24.
doi: 10.1016/j.landurbplan.2017.12.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204618300021
[31] Zhang Y Z, Zhang H S, Hui L, et al. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J]. Remote Sensing of Environment, 2014, 141:155-167.
doi: 10.1016/j.rse.2013.10.028 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713003969
[32] Zhang H S, Lin H, Li Y, et al. Mapping urban impervious surface with dual-polarimetric SAR data:An improved method[J]. Landscape and Urban Planning, 2016, 151:55-63.
doi: 10.1016/j.landurbplan.2016.03.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204616000426
[33] 陈凯, 肖能文, 王备新, 等. 黄河三角洲石油生产对东营湿地底栖动物群落结构和水质生物评价的影响[J]. 生态学报, 2012, 32(6):1970-1978.
[33] Chen K, Xiao N W, Wang B X, et al. The effects of petroleum on water quality bio-assessment and benthic macro-invertbrate communities in the Yellow River Delta wetland,Dongying[J]. Acta Ecologica Sinica, 2012, 32(6):1970-1978.
doi: 10.5846/stxb url: http://www.ecologica.cn/
[34] 丁彤彤, 周廷刚, 朱晓波, 等. 基于卫星遥感影像的黄河三角洲湿地景观格局动态变化研究——以东营市为例[J]. 西南师范大学学报(自然科学版), 2016, 41(04):52-57.
[34] Ding T T, Zhou T G, Zhu X B, et al. On dynamic changes of wetland in Yellow River Delta with remote sensing images:A case study of Dongying City[J]. Southwest Normal University(Natural Science Edition), 2016, 41(4):52-57.
[35] 秦天天, 齐伟, 徐柏琪, 等. 基于RV指数的道路对黄河三角洲地区土地利用的影响:以东营市为例[J]. 河北农业科学, 2011, 15(11):67-72.
[35] Qin T T, Qi W, Xu B Q, et al. Impacts of road on land use based on RV index in Yellow River Delta:A case in Dongying City[J]. Heibei Agricultural Sciences, 2011, 15(11):67-72.
[36] 刘翠翠. 黄河三角洲湿地生态修复工程效果研究[D]. 济南:山东师范大学, 2013.
[36] Liu C C. The study of the wetland restoration engineering effect in Yellow River Delta[D]. Jinan:Shandong Normal University, 2013.
[37] 侯学会, 李新华. 黄河三角洲自然保护区1992—2010年土地覆被变化分析[J]. 亚热带植物科学, 2015, 44(4):309-314.
[37] Hou X H, Li X H. Characteristics of land cover change in the Yellow River estuary nature reserve from 1992 to 2010[J]. Subtropical Plant Science, 2015, 44(4):309-314.
[38] Lee J S. Digital image smoothing and the sigma filter[J]. Computer Vision Graphics and Image Processing, 1983, 24:255-269.
doi: 10.1016/0734-189X(83)90047-6 url: https://linkinghub.elsevier.com/retrieve/pii/0734189X83900476
[39] Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28:992-1000.
doi: 10.1109/36.62623 url: http://ieeexplore.ieee.org/document/62623/
[40] Xie H, Pierce L E, Ulaby F T. SAR speckle reduction using wavelet denoising and Markov random field modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40:2196-2212.
doi: 10.1109/TGRS.2002.802473 url: http://ieeexplore.ieee.org/document/1105905/
[41] Feng Q L, Liu J T, Gong J H. UAV remote sensing for urban vegetation mapping using random forest and texture analysis[J]. Remote sensing, 2015, 7(1):1074-1094.
doi: 10.3390/rs70101074 url: http://www.mdpi.com/2072-4292/7/1/1074
[42] Dell’Acqua F, Gamba P. Texture-based characterization of urban environments on satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41:153-159.
doi: 10.1109/TGRS.2002.807754 url: http://ieeexplore.ieee.org/document/1183703/
[43] Stasolla M, Gamba P. Spatial indexes for the extraction of formal and informal human settlements from high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(2):98-106.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[44] Feng Q L, Liu J T, Gong J H. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier:A case of Yuyao,China[J]. Water, 2015, 7(4):1437-1455.
doi: 10.3390/w7041437 url: http://www.mdpi.com/2073-4441/7/4/1437
[45] Puissant A, Hirsch J, Weber C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing, 2005, 26:733-745.
doi: 10.1080/01431160512331316838 url: https://www.tandfonline.com/doi/full/10.1080/01431160512331316838
[46] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[47] 蒲东川. 多源卫星遥感数据驱动的城市不透水面提取[D]. 长春:吉林大学, 2020.
[47] Pu D C. Urban impervious surface extraction driven by multi-source satellite remote sensing data[D]. Changchun:Jilin University, 2020.
[48] 蔡博文, 王树根, 王磊, 等. 基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报, 2019, 21(9):1420-1429.
doi: 10.12082/dqxxkx.2019.180679
[48] Cai B W, Wang S G, Wang L, et al. Extraction of urban impervious surface from high-resolution remote sensing imagery based on deep learning[J]. Geo-Information Science, 2019, 21(9):1420-1429.
[49] 邵振峰, 张源, 周伟琪, 等. 基于测绘卫星影像的城市不透水面提取[J]. 地理空间信息, 2016, 14(7):1-6.
[49] Shao Z F, Zhang Y, Zhou W Q, et al. Extraction of urban impervious surface based on high resolution remote sensing image[J]. Geospatial Information, 2016, 14(7):1-6.
[50] 朱德海, 刘逸铭, 冯权泷, 等. 基于GEE的山东省近30年农业大棚时空动态变化研究[J]. 农业机械学报, 2020, 51(1):168-175.
[50] Zhu D H, Liu Y M, Feng Q L, et al. Spatial-temporal dynamic changes of agricultural greenhouses in Shandong Province in recent 30 years based on Google Earth Engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1):168-175.
[51] Rodriguez-Galiano V F, Ghimire B, Rogan J, An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104.
doi: 10.1016/j.isprsjprs.2011.11.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271611001304
[1] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[2] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[3] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[4] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[5] HOU Yingzhuo, JI Ling, XING Qianguo, SHENG Dezhi. Satellite remote sensing-assisted comparative monitoring of dynamic characteristics of macroalgae aquaculture in Weihai City, Shandong Province, China[J]. Remote Sensing for Natural Resources, 2023, 35(2): 34-41.
[6] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[7] TIAN Chen, ZHANG Jinlong, JIN Yirong, DONG Shiyuan, WANG Bin, ZHANG Naixiang. A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(1): 49-56.
[8] HE Binfang, YAO Yun, FENG Yan, LIU Huimin, DAI Juan. Sentinel-1A based flood inundation monitoring in Anhui Province during the plum rain period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1): 140-147.
[9] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
[10] WANG Yu, ZHOU Zhongfa, WANG Lingyu, LUO Jiancheng, HUANG Denghong, ZHANG Wenhui. Sentinel-1-based spatial differentiation study of the planting structures in Karst plateau mountainous areas[J]. Remote Sensing for Natural Resources, 2022, 34(4): 155-165.
[11] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[12] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[13] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[14] ZHA Dongping, CAI Haisheng, ZHANG Xueling, HE Qinggang. Extraction of paddy fields using multi-temporal Sentinel-1 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 184-195.
[15] WEI Chang, FU Bolin, QIN Jiaoling, WANG Yanan, CHEN Zhihan, LIU Bing. Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2022, 34(2): 251-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech