Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 154-161     DOI: 10.6046/gtzyyg.2018.02.21
|
Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing
Gang LIU(), Yunpeng YAN, Jianyu LIU
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(5946 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

It appears that most lakes are controlled by tension faults, as shown by the study of the shapes,size,numbers and distribution of lakes in the hinterland of the Tibetan Plateau using remote sensing. The shapes and distribution of lakes have visible regularity and are in accordance with measurement data of GPS which reflect the conditions of regional stress field. The territorial characteristics of lakes on patterns and distribution in different stress fields constitute an embodiment of different tectonic backgrounds. The fact that the lithosphere matters in middle Tibetain Plateau escaped southeastward might have been an important factor for the formation of a large number of rift lakes. The distribution regularity of lakes is a window to research on tectonics of the Tibetan Plateau, and can be used to supervise the prospecting for groundwater.

Keywords Tibetan Plateau      remote sensing      lakes      distribution      prospecting for groundwater     
:  TP79  
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gang LIU
Yunpeng YAN
Jianyu LIU
Cite this article:   
Gang LIU,Yunpeng YAN,Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.21     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/154
Fig.1  Horizontal movement rate field within Qinghai-Tibet Plateau under the overall fixed framework of Qinghai-Tibet Plateau
Fig.2  Types and distribution of lakes in western Qinghai-Tibet Plateau
Fig.3  S and Z modes of pull-apart basins created by strike-slip faults
Fig.4  En echelon pull-apart basins, S style fold and rhombus depression created by left-slip faults
Fig.5  Lentoid minitype lakes created by shearing zones
Fig.6  En echelon pull-apart lakes created by Brahmaputra right-slip faults
Fig.7  Image of near south-north strike rift lakes
Fig.8  Screen copy on Google Earth of down-warped lakes in midland of Qinghai-Tibet Plateau
[1] 许志琴, 杨经绥, 戚学祥 , 等. 印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 2006,25(1/2):1-14.
doi: 10.3969/j.issn.1671-2552.2006.01.003 url: http://d.wanfangdata.com.cn/Periodical/zgqydz200601003
[1] Xu Z Q, Yang J S, Qi X X , et al. India-Asia collision:A further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas[J]. Geological Bulletin of China, 2006,25(1/2):1-14.
[2] 王国灿, 张克信, 曹凯 , 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学, 2010,35(5):713-727.
[2] Wang G C, Zhang K X, Cao K , et al. Expanding processes of the Qinghai-Tibet Plateau during Cenozoic:An insight from spatio-temporal difference of uplift[J]. Earth Science, 2010,35(5):713-727.
[3] 崔军文, 李朋武, 李莉 . 青藏高原的隆升:青藏高原的岩石圈结构和构造地貌[J]. 地质论评, 2001,47(2):157-163.
[3] Cui J W, Li P W, Li L . Uplift of the Qinghai-Tibet Plateau:Tectonic geomorphology and lithospheric structure of the Qinghai-Tibet Plateau[J]. Geological Review, 2001,47(2):157-163.
[4] 徐祖丰, 刘细元, 罗小川 , 等. 青藏高原冈底斯当穹错—许如错一带新近纪—第四纪地堑的基本特征[J]. 地质通报, 2016,25(7):822-826.
[4] Xu Z F, Liu X Y, Luo X C , et al. Basic characteristic of the Neogene-Quaternary graben in the Tangqung Co Xuru Co area, Gangdise,Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2016,25(7):822-826.
[5] 朱大岗, 孟宪刚, 邵兆刚 , 等. 青藏高原古近纪—新近纪古湖泊的特征及分布[J]. 地质通报, 2006,25(1/2):34-42.
doi: 10.3969/j.issn.1671-2552.2006.01.007 url: http://d.wanfangdata.com.cn/Periodical/zgqydz200601007
[5] Zhu D G, Meng X G, Shao Z G , et al. Characteristics and distribution of Paleogene-Neogene paleolakes on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2006,25(1/2):34-42.
[6] 李炳元, 张青松, 王富葆 . 喀喇昆仑山—西昆仑山地区湖泊演化[J]. 第四纪研究, 1991,11(1):64-71.
[6] Li B Y, Zhang Q S, Wang F B . Evolution of the lakes in the Karakorum-West Kunlun Mountains[J]. Quaternary Sciences, 1991,11(1):64-71.
[7] 李炳元, 王苏民, 朱立平 , 等. 12 kaBP前后青藏高原湖泊环境[J]. 中国科学( D辑), 2001,31(s1):258-263.
[7] Li B Y, Wang S M, Zhu L P , et al. 12 kaBP lake environment on the Tibetan Plateau[J]. Science in China Series D(Earth Sciences), 2001,44(s1):324-331.
[8] 闫立娟, 郑绵平, 魏乐军 . 近40年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 2016,23(4):310-323.
doi: 10.13745/j.esf.2016.04.027 url: http://www.cqvip.com/QK/98600X/201604/669287552.html
[8] Yan L J, Zheng M P, Wei L J . Change of the lakes in Tibetan Plateau and its response to climate in the past forty years[J]. Earth Science Frontiers, 2016,23(4):310-323.
[9] 朱大岗, 孟宪刚, 赵希涛 , 等. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J]. 中国地质, 2004,31(3):269-277.
doi: 10.3969/j.issn.1000-3657.2004.03.005 url: http://www.cqvip.com/Main/Detail.aspx?id=10327668
[9] Zhu D G, Meng X G, Zhao X T , et al. Evolution and climatic change of Nam Co of Tibet and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene[J]. Geology in China, 2004,31(3):269-277.
[10] 许志琴, 杨经绥, 李海兵 , 等. 印度—亚洲碰撞大地构造[J]. 地质学报, 2011,85(1):1-33.
url: http://www.cqvip.com/Main/Detail.aspx?id=36607656
[10] Xu Z Q, Yang J S, Li H B , et al. On the tectonics of the India-Asia collision[J]. Acta Geologica Sinica, 2011,85(1):1-33.
[11] 许志琴, 李海兵, 杨经绥 . 造山的高原——青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006,13(4):1-17.
doi: 10.3321/j.issn:1005-2321.2006.04.002 url: http://www.cqvip.com/Main/Detail.aspx?id=22369586
[11] Xu Z Q, Li H B, Yang J S . An orogenic plateau:The orogenic collage and orogenic types of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2006,13(4):1-17.
[12] 张培震, 张会平, 郑文俊 , 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014,36(3):574-585.
[12] Zhang P Z, Zhang H P, Zheng W J , et al. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology, 2014,36(3):574-585.
[13] 彭小龙, 王道永 . 雅鲁藏布江断裂带活动构造特征与活动性分析[J]. 长江大学学报(自然科学版), 2013,10(26):41-44.
url: http://d.wanfangdata.com.cn/Periodical/cjdxxb-b201309014
[13] Peng X L, Wang D Y . The active structural characteristics and activity analysis of Yarlungzangbo fracture zone[J]. Journal of Yangtze University(Natural Science Edition), 2013,10(26):41-44.
[14] 武长得, 朱红, 邓宗策 , 等. 雅鲁藏布江断裂带的构造特征[J]. 中国地质科学院院报, 1990,21(s1):87-94.
[14] Wu C D, Zhu H, Deng Z C , et al. The structural characteristics of Yarlungzangbo fracture zone[J]. Bulletin of the Chinese Academy of Geological Sciences, 1990,21(s1):87-94.
[15] 李海兵, Valli F, 许志琴,等.喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 2006,33(2):239-255.
doi: 10.3969/j.issn.1000-3657.2006.02.002 url: http://d.wanfangdata.com.cn/Periodical/zgdizhi200602002
[15] Li H B, Valli F, Xu Z Q , et al. Deformation and tectonic evolution of the Karakorum fault,western Tibet[J]. Geology in China, 2006,33(2):239-255.
[16] 刘刚, 李述靖, 赵福岳 , 等. 阿尔金—康西瓦剪切-推覆系统和帕米尔推覆构造的遥感解析[J]. 地球学报, 2006,27(1):25-29.
doi: 10.3321/j.issn:1006-3021.2006.01.003 url: http://www.cqvip.com/Main/Detail.aspx?id=1000998070
[16] Liu G, Li S J, Zhao F Y , et al. A remote sensing analysis of Altun-Kangxiwa shear-thrust system and Pamir nappe structure[J]. Acta Geoscientica Sinica, 2006,27(1):25-29.
[17] 胡旭莉, 陈文 . 东昆仑西段布喀达坂峰地区昆南断裂初步研究[J]. 青海大学学报(自然科学版), 2010,28(3):36-41.
doi: 10.3969/j.issn.1006-8996.2010.03.009 url: http://d.wanfangdata.com.cn/Periodical/qhdxxb-zr201003009
[17] Hu X L, Chen W . Pilot study of Southern Kunlun fracture at Bukedaban area of the west part of east Kunlun[J]. Journal of Qinghai University(Nature Science), 2010,28(3):36-41.
[18] 李春峰, 贺群禄, 赵国光 . 东昆仑活动断裂带东段全新世滑动速率研究[J]. 地震地质, 2004,26(4):676-687.
doi: 10.3969/j.issn.0253-4967.2004.04.013 url: http://d.wanfangdata.com.cn/Periodical_dzdz200404013.aspx
[18] Li C F, He Q L, Zhao G G . Holocene slip rate along the eastern segment of the Kunlun fault[J]. Seismology and Geology, 2004,26(4):676-687.
[19] 许志琴, 李海兵, 唐哲民 , 等. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报, 2011,27(11):3157-3170.
url: http://d.wanfangdata.com.cn/Periodical/ysxb98201111001
[19] Xu Z Q, Li H B, Tang Z M , et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J].Acta Petrologica Sinica, 27(11):3157-3170.
[20] 许志琴, 曾令森, 杨经绥 . 走滑断裂、“挤压性盆-山构造”与油气资源关系的探讨[J]. 地球科学, 2004,29(6):631-643.
doi: 10.3321/j.issn:1000-2383.2004.06.001 url: http://www.cqvip.com/QK/71135X/201107/11312097.html
[20] Xu Z Q, Zeng L S, Yang J S . Role of large-scale strike-slip faults in the formation of petroleum-bearing compressional basin-mountain range systems[J]. Earth Science, 2004,29(6):631-643.
[21] 弓小平, 马华东, 杨兴科 , 等. 木孜塔格—鲸鱼湖断裂带特征、演化及其意义[J]. 大地构造与成矿学, 2004,28(4):418-427.
doi: 10.3969/j.issn.1001-1552.2004.04.008 url: http://www.cqvip.com/Main/Detail.aspx?id=10763185
[21] Gong X P, Ma H D, Yang X K , et al. Meaning and evolution and characteristic of Muztag-Cetacean Lake fracture zone[J]. Geotectonica et Metallogenia, 2004,28(4):418-427.
[22] 杨顺虎, 付碧宏, 时丕龙 . 东昆仑活动断裂带秀沟盆地段晚第四纪构造变形与地貌特征研究[J]. 第四纪研究, 2012,32(5):921-930.
[22] Yang S H, Fu B H, Shi P L . Late Quaternary structural deformation and tectono-geomorphic features along the Xiugou Basin segment,eastern Kunlun fault zone[J]. Quaternary Sciences, 2012,32(5):921-930.
[23] 甘卫军, 沈正康, 张培震 , 等. 青藏高原地壳水平差异运动的GPS观测研究[J]. 大地测量与地球动力学, 2004,24(1):29-35.
[23] Gan W P, Shen Z K, Zhang P Z , et al. Horizontal crustal movement of Tibetan Plateau from GPS measurements[J]. Journal of Geodesy and Geodynamics, 2004,24(1):29-35.
[24] 张培震, 沈正康, 王敏 , 等. 青藏高原及周边现今构造变形的运动学[J]. 地震地质, 2004,26(3):367-377.
doi: 10.3969/j.issn.0253-4967.2004.03.002 url: http://d.wanfangdata.com.cn/Periodical/dzdz200403002
[24] Zhang P Z, Shen Z K, Wang M , et al. Kinematics of present-day tectonic deformation of the Tibetan Plateau and its vicinities[J]. Seismology and Geology, 2004,26(3):367-377.
[25] Tapponnier P, Peltzer G, Le Dain A Y,et al.Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 1982,10(12):611-616.
doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 url: https://pubs.geoscienceworld.org/geology/article/10/12/611-616/203380
[26] England P, Houseman G . Finite strain calculations of continental deformation:2.Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research, 1986,91(B3):3664-3676.
doi: 10.1029/JB091iB03p03664 url: http://doi.wiley.com/10.1029/JB091iB03p03664
[27] 曹建玲, 石耀霖, 张怀 , 等. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报, 2009,54(2):224-234.
[27] Cao J L, Shi Y L, Zhang H , et al. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau[J]. Chinese Science Bulletin, 2009,54(8):1398-1410.
[28] 李小兵, 裴先治, 陈有炘 , 等. 东昆仑造山带东段哈图沟—清水泉—沟里韧性剪切带塑性变形及动力学条件研究[J]. 大地构造与成矿学, 2015,39(2):208-230.
url: http://www.cqvip.com/QK/90781X/201502/664931912.html
[28] Li X B, Pei X Z, Chen Y X , et al. Study on the plastic deformation and dynamic condition of Hatugou-Qingshuiquan-Gouli ductile shear zone in the eastern section of East Kunlun[J]. Geotectonica et Metallogenia, 2015,39(2):208-230.
[29] 张紫程, 张绪教, 高万里 , 等. 东昆仑左行走滑韧性剪切带形成时代的锆石U-Pb年龄证据[J]. 地质力学学报, 2010,16(1):51-58.
[29] Zhang Z C, Zhang X J, Gao W L , et al. Evidence of zircon U-Pb ages for the formation time of the East Kunlun left-lateral ductile shear belt[J]. Journal of Geomechanics, 2010,16(1):51-58.
[30] 陈兆恩, 林秋雁 . 青藏高原湖泊涨缩的新构造运动意义[J].地震, 1993(1):31-40,52.
url: http://www.cqvip.com/Main/Detail.aspx?id=1009571
[30] Chen Z E, Lin Q Y . Significance of neotectonic movement of lake extension and shrinkage in Qinghai-Tibet Plateau[J].Earthquake, 1993(1):31-40,52.
[31] 百度百科.拉分盆地[EB/OL].( 2016- 10- 07)[2016-11-06]..
url: http://baike.baidu.com/item/%E6%8B%89%E5%88%86%E7%9B%86%E5%9C%B0
[31] Baidubaike.Pull-apart basin[EB/OL].( 2016- 10- 07)[2016-11-06]..
url: http://baike.baidu.com/item/%E6%8B%89%E5%88%86%E7%9B%86%E5%9C%B0
[32] 刘芳晓, 刘德民, 李德威 , 等. 青藏高原班公错的湖盆成因及构造演化[J]. 地球科学, 2013,38(4):745-754.
doi: 10.3799/dqkx.2013.072 url: http://d.wanfangdata.com.cn/Periodical/dqkx201304006
[32] Liu F X, Liu D M, Li D W , et al. Causes and tectonic evolution of Bangong Lake basin[J]. Earth Science, 2013,38(4):745-754.
[33] 王辉, 范玉海, 张少鹏 , 等. 运用高分遥感技术圈定西昆仑黑恰铁多金属矿化带[J].中国地质调查, 2016, 3(5):13-20.
url: http://d.wanfangdata.com.cn/Periodical/zgdzdc201605003
[33] Wang H, Fan Y H, Zhang S P , et al. Delineation of Heiqia iron polymetallic mineralization zone in West Kunlun region using high resolution remote sensing technology[J]. Geological Survey of China, 2016,3(5):13-20.
[34] 杨金中, 王海庆, 陈微 . 西昆仑成矿带高分辨率遥感调查主要进展与成果[J].中国地质调查,2016, 3(5):7-12.
url: http://d.wanfangdata.com.cn/Periodical/zgdzdc201605002
[34] Yang J Z, Wang H Q, Chen W . Main progress and achievements of high spacial resolution remote sensing survey on west Kunlun metallorgenic belt[J]. Geological Survey of China, 2016,3(5):7-12.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech