Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 143-148     DOI: 10.6046/gtzyyg.2020.03.19
|
Research on temporal and spatial evolution law of land subsidence in Zhengzhou
WANG Baocun1(), ZHU Lin1, PAN Deng2, GUO Lingfei1, PENG Peng3
1. Institute of Surveying, Mapping and Geoinformation of Henan Provincial Bureau of Geo-Exploration and Mineral Development,Zhengzhou 450000, China
2. Henan Geo-Environmental Monitoring Institute, Zhengzhou 450016, China,Zhengzhou 450000, China
3. Geological Survey of Anhui Province, Hefei 230001, China
Download: PDF(3624 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The monitoring results in recent years show that land subsidence in Zhengzhou has been developed rapidly. In order to find out the evolution law of Zhengzhou’s land subsidence and serve the prevention and control work of urban land subsidence, the authors selected the synthetic aperture Radar(SAR) data in recent years (2007—2017), compiled the land subsidence distribution maps of Zhengzhou in four periods of 2007—2010, 2012—2013, 2013—2016 and 2016—2017 by combining with the bench-mark monitoring results, and analyzed the evolution law of Zhengzhou’s land subsidence from time and space. By the GIS room analysis method, the authors studied the space-time response relation between land subsidence and urban village evolution in recent years. Research results show that the urban village is the predominant factor in the land subsidence evolution of Zhengzhou, namely, the groundwater abstraction in urban village causes land subsidence; the relocation of urban village and reduction of groundwater abstraction cause slow land subsidence and even uplift of land subsidence; the relocation causes the floating population to move to outer suburbs, which forms a new floating population and industrial accumulation area, and further forms a new ground subsidence area.

Keywords SAR      land subsidence      evolution law      urban village     
:  TP79  
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baocun WANG
Lin ZHU
Deng PAN
Lingfei GUO
Peng PENG
Cite this article:   
Baocun WANG,Lin ZHU,Deng PAN, et al. Research on temporal and spatial evolution law of land subsidence in Zhengzhou[J]. Remote Sensing for Land & Resources, 2020, 32(3): 143-148.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.19     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/143
时段 卫星 图像数
量/景
空间分
辨率/m
时间
ENVISAT-1 20 20 2007年9月—2010年10月
TerraSAR-X 17 3 2012年9月—2013年9月
Radarsat-2 15 30 2013年9月—2016年2月
Radarsat-2 12 5 2016年2月—2017年2月
Tab.1  SAR image
Fig.1  Map of land subsidence division of Zhengzhou City
Fig.2  Map of land subsidence amplitude of Zhengzhou City
时间段 轻微区 较重区 严重区 总面积
302.5 52.8 5.9 361.2
540.5 70.1 34.9 645.5
336.2 67.8 32.3 436.3
498.8 25.8 0.3 524.9
Tab.2  Area of land subsidence division(km2)
时间段 急剧
下降
缓慢
下降
沉降加剧
总面积
缓慢
变缓
急剧
变缓
沉降变缓
总面积
Ⅱ-Ⅰ 32.9 65.0 97.9 15.0 8.1 23.1
Ⅲ-Ⅱ 1.9 14.8 16.7 30.7 10.2 40.9
Ⅳ-Ⅲ 1.2 18.6 19.8 36.7 58.0 94.7
Ⅳ-Ⅰ 9.4 50.6 60.0 42.5 35.3 77.8
Tab.3  Area of land subsidence amplitude(km2)
Fig.3-1  Process of urban villageremovalin Zhengzhou City
Fig.3-2  Process of urban villageremovalin Zhengzhou City
时间段 轻微区 较重区 严重区
218 34 5
314 31 20
192 50 9
194 19 0
  
时间段 急剧下降区 缓慢下降区 缓慢变缓区 急剧变缓区
前一时
段/个
后一时
段/个
保有
率/%
前一时
段/个
后一时
段/个
保有
率/%
前一时
段/个
后一时
段/个
保有
率/%
前一时
段/个
后一时
段/个
保有
率/%
Ⅱ-Ⅰ 17 12 71 41 32 78 10 5 50 6 2 33
Ⅲ-Ⅱ 3 3 100 13 11 85 5 0 0 4 0 0
Ⅳ-Ⅲ 1 1 100 11 11 100 8 6 75 19 6 32
Ⅳ-Ⅰ 10 9 90 54 38 70 26 2 8 25 2 8
Tab.5  Number of urban village in land subsidence amplitude
年份 地下水位
埋深/m
地下水降落
漏斗面积/km2
当年拆掉
的村庄/个
当年一直存
在的村庄/个
2013年 75.9 152.9 15 56
2014年 64.1 133.6 17 39
2015年 60.1 88.0 24 15
2016年 55.7 85.1 9 6
2017年 53.3 76.5 2 4
Tab.6  Number of urban village in cone of depression between 2013 and 2017
时间段 轻微区 较重区 严重区
57.8 36.0 29.8
44.7 1.8 0
Tab.7  Area of land subsidence division in cone of depression(km2)
[1] 吴建中. 中国地面沉降地质灾害区划方法与实践[J].上海国土资源, 2011(2):84-87.
[1] Wu J Z. Method and application of land subsidence disaster regionalization[J].Shanghai Land & Resources 2011(2):84-87.
[2] 张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.
[2] Zhang Y H, Wu H A, Kang Y H. Ground subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodateica et Cartographica Sinica, 2016,45(9):1050-1058.
[3] 田芳, 罗勇, 周毅, 等. 北京地面沉降与地下水开采时空演变对比[J]. 南水北调与水利科技, 2017,15(2):163-169.
[3] Tian F, Luo Y, Zhou Y, et al. Contrastive analysis of spatial-temporal evolution between land subsidence and groundwater exploitation in Beijing[J]. South-to-North Water Transfers and Water Science & Technology, 2017,15(2):163-169.
[4] 葛大庆, 张玲, 王艳, 等. 上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析[J].上海国土资源, 2014(4):62-67.
[4] Ge D Q, Zhang L, Wang Y, et al. Monitoring subsidence on Shanghai metro line 10 during construction and operation using high-resolution InSAR[J].Shanghai Land & Resources 2014(4):62-67.
[5] 范景辉, 李梅, 郭小方, 等. 基于PSInSAR方法和ASAR数据监测天津地面沉降的试验研究[J]. 国土资源遥感, 2007,19(4):23-27.doi: 10.6046/gtzyyg.2007.04.05.
[5] Fan J H, Li M, Guo X F, et al. A preliminary study of the subsidence in Tianjin area using ASAR images based on PSInSAR technique[J]. Remote Sensing for Land and Resources, 2007,19(4):23-27.doi: 10.6046/gtzyyg.2007.04.05.
[6] 郭新华, 李建欣. 开展郑州市地面沉降监测工作的必要性[J], 中国地质灾害与防治学报, 2007,18(1):147-148.
[6] Guo X H, Li J X. The necessity of land subsidence monitoring in Zhengzhou[J]. The Chinese Journal of Geological Hazard and Control, 2007,18(1):147-148.
[7] 汪宝存, 李芳芳, 潘登, 等. PS-InSAR技术在郑州市地面沉降调查中的应用[J]. 测绘科学, 2013,38(5):43-45.
[7] Wang B C, Li F F, Pan D, et al. Application of PS-InSAR technology in land subsidence investigation of Zhengzhou[J]. Science of Surveying and Mapping, 2013,38(5):43-45.
[8] 王义梅, 罗小军, 于冰, 等. 郑州市地面沉降InSAR监测[J]. 测绘科学, 2019,44(9):100-106.
[8] Wang Y M, Luo X J, Yu B, et al. Monitoring ground subsidence in Zhengzhou with InSAR[J]. Science of Surveying and Mapping, 2019,44(9):100-106.
[9] 管力, 唐伟, 戴华阳, 等. 采用SBAS-InSAR技术监测郑州城区地面沉降[J]. 北京测绘, 2019,33(4):462-467.
[9] Guan L, Tang W, Dai H Y, et al. Monitoring ground subsidence in Zhengzhou City based on SBAS-InSAR technology[J]. Beijing Surverying and Mapping, 2019,33(4):462-467.
[10] 夏飞雪, 姚青, 聂明军. 京广高铁郑州段地面沉降原因分析[J]. 地下水, 2014,36(4):97-98.
[10] Xia F X, Yao Q, Nie M J. Reason analysis of land subsidence in Zhengzhou section of Beijing Guangzhou high speed railway[J]. Ground Water, 2014,36(4):97-98.
[11] 詹学启, 张占荣. 郑徐高速铁路郑州段区域地面沉降预测分析[J]. 铁道标准设计, 2014,58(7):56-60.
[11] Zhan X Q, Zhang Z R. Prediction and analysis of regional land subsidence in Zhengzhou section of Zheng Xu high speed railway[J]. Railway Standard Design, 2014,58(7):56-60.
[12] 朱卫民, 汪宝存, 宋会传, 等. 基于InSAR的京广高铁郑州段地面沉降调查与监测[J]. 测绘与空间地理信息, 2019,42(9):61-63.
[12] Zhu W M, Wang B C, Song H C, et al. Investination and monitoring of ground subsidence in Zhengzhou section of high-speed railway between Beijing and Guangzhou[J]. Geomatics & Spatial Information Technology, 2019,42(9):61-63.
[13] 刘勇. 黄河三角洲地区地面沉降时空演变特征及机理研究[D]. 青岛:中国科学院海洋研究所, 2013.
[13] Liu Y. Spatiotemporal evolution of land subsidence and mechanism discussion in the Yellow River Delta,China[D].Tsingtao:Institute of Oceanology,Chinese Academy of Science, 2013.
[14] 刘杰. 郑州市流动人口信息服务与管理研究[D]. 郑州:郑州大学, 2014.
[14] Liu J. Zhengzhou City information service and management of the floating population study[D]. Zhengzhou:Zhengzhou University, 2014.
[15] 王元亮. 郑州城中村改造现状、困境与对策[J]. 现代城市, 2015,10(2):11-14.
[15] Wang Y L. The status quo,dilemma,and countermeasure of the reconstruction of urban village in Zhengzhou[J]. Modern City, 2015,10(2):11-14.
[16] 豆敬峰, 田君慧, 潘登, 等. 郑州市地下水动态监测报告(2007—2017)[R]. 郑州:河南省地质环境监测院, 2017.
[16] Dou J F, Tian J H, Pan D, et al. Report on groundwater dynamic monitoring in Zhengzhou(2007—2017)[R].Zhengzhou:Henan Geo-Environmental Monitoring Institute, 2015.
[1] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[2] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[5] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[6] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[7] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[8] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[9] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[10] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[11] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[12] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[13] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[14] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[15] JIANG Shan, WANG Chun, SONG Hongli, LIU Yufeng. A study of crop planting type recognition based on SAR and optical remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech