Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (1) : 133-137     DOI: 10.6046/gtzyyg.2011.01.27
Technology Application |
The Investigation of Spatiotemporal Patterns of Landscape Fragmentation
during Rapid Urbanization in Changsha City
HONG Hong-jia 1,2, PENG Xiao-chun 1, CHEN Zhi-liang 1 , ZHANG Xing-xing 1,2, Liu Qiang 1,2
(1.South China Institute of Environmental Sciences, Ministry of Environmental Protection of China, Guangzhou 510655, China; 2.Hunan Agricultural University, Changsha 410128, China)
Download: PDF(1344 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Based on Remote Sensing and GIS, this paper quantified the landscape fragmentation of Changsha city by using landscape pattern metrics such as patch density, edge density, mean patch fractal dimension, landscape contagion index and Shannon diversity index. To reflect the spatial change in landscape fragmentation from the extent of human influence on the environment, the authors selected two transects in the orientation from north to south (N-S,40 km×8 km) and from west to east (W-E, 40 km×8 km) through Changsha’s spatial gravity center. Eight concentric areas with different radii from Changsha’s spatial gravity center were also selected to analyze the temporal change in landscape fragmentation. The results show that the spatial gravity center has moved 2.45 km in east-southeast direction for about 75°. The outward expansion of the construction land in the form of concentric zone model has a great impact on the landscape pattern of the suburbs. The study of urban-to-rural transects has also showed that the agglomeration effects in urban areas are obvious. In contrast to the city center, fragmentation of landscape has been increasing and spatial heterogeneity has been changing dramatically in suburban areas.
Keywords POS      GPS      IMU      Photogrammetry      Bundle block adjustment     
: 

X 171.1

 
Issue Date: 22 March 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Da-hai
WU Li-xin
WANG Jian-chao
ZHENG Xiong-wei
Cite this article:   
GUO Da-hai,WU Li-xin,WANG Jian-chao, et al. The Investigation of Spatiotemporal Patterns of Landscape Fragmentation
during Rapid Urbanization in Changsha City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 133-137.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.01.27     OR     https://www.gtzyyg.com/EN/Y2011/V23/I1/133
[1]马克明,傅伯杰.北京东灵山地区景观格局及破碎化评价[J].植物生态学报,2000(3):1127-1133.
[2]李哈滨,伍业钢.数量方法在景观生态学中的应用[C]∥刘建国.现代生态学研究进展.北京:中国科技出版社,1992:209-233.
[3]谭丽,何兴元,陈玮,等.基于QuickBird卫星影像的沈阳城市绿地景观格局梯度分析[J].生态学杂志,2008(7):524-530.
[4]彭月,王建力,魏虹.重庆市土地利用景观格局现状及其破碎化分析[J].西南大学学报(自然科学版),2008(6):2305-2310.
[5]王永军,李团胜,刘康,等.榆林地区景观格局分析及其破碎化评价[J].资源科学,2005(2):765-770.
[6]赵安玖,胡庭兴,赖长鸿,等.区域森林景观破碎化对比分析[J].四川农业大学学报,2006(2):58-64.
[7]杨国靖,肖笃宁.森林景观格局分析及破碎化评价——以祁连山西水自然保护区为例[J].生态学杂志,2003(5):78-83.
[8]王斌,刘华,张硕新,等.秦岭火地塘林区景观格局破碎度分析[J].中国农学通报,2005(10):2353-2359.
[9]索安宁,赵冬至,高树岗.基于本底格局的鸭绿江口滨海湿地景观破碎化评价[J].生态与农村环境学报,2009(3):6-10.
[10]井学辉,臧润国,曹磊,等.新疆额尔齐斯河流域北屯段景观格局及破碎化[J].林业科学,2008(3):767-774.
[11]Shen W,Jenerette G D,Wu J,et al.Evaluating Empirical Scaling Relations of Pattern Metrics with Simulated Landscapes[J].Ecography,2004(27):459-469.
[12]Wu J G,Shen W J,Sun W Z,et al.Empirical Patterns of the Effects of Changing Scale on Landscape Metrics[J].Landscape Ecology,2002(17):761-782.
[13]由畅,周永斌,于丽芬.景观破碎化数量分析方法概述[J].中国农学通报,2006(5):154-160.
[14]邬建国.景观生态学:格局过程尺度与等级[M].北京:高等教育出版社,2000.
[15]李秀珍,布仁仓,常禹,等.景观格局指标对不同景观格局的反应[J].生态学报,2004,24(1):123-134.
[16]尹海伟,孔繁花.济南市城市绿地时空梯度分析[J].生态学报,2005,25(11):3010-3018.
[17]黄家生,李新一,李建龙,等.亚太发展中国家三大城市景观格局梯度动态与城乡融合区特征[J].生态学杂志,2009,28(6):1134-1142.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[3] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[4] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[5] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[6] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[7] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[8] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[9] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[10] ZHANG Hongli, LUO Weiran, LI Yan. Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(4): 33-40.
[11] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[12] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[13] Pengyan HUANG, Lijing BU, Yongliang FAN. Integrating visual features in polarimetric SAR image classification[J]. Remote Sensing for Land & Resources, 2020, 32(2): 88-93.
[14] Guangyu ZHOU, Bangquan LIU, Dan ZHANG. Target recognition in SAR images based on variational mode decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(2): 33-39.
[15] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech