Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 1-11     DOI: 10.6046/gtzyyg.2018.02.01
|
Review of spatiotemporal fusion model of remote sensing data
Wenquan DONG1,2(), Jihua MENG1()
1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101,China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(1016 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Taking the interaction between spatial and temporal resolution of remote sensing data into consideration, the authors hold that there is no satellite sensor that can produce images with both high spatial and temporal resolution, and spatiotemporal fusion of remote sensing data is an effective method to solve this problem. This paper introduces main research achievements of spatiotemporal fusion model obtained both in China and abroad. Based on the comparative analysis of the mainstream fusion models, these models can be divided into two categories, i.e., the transformation-based model and the pixel-reconstruction-based model. Furthermore, the authors divide the pixel-reconstruction-based model into mixed linear model and spatial and temporal adaptive reflectance model, and then introduce the basic principles, methods of these models. This paper makes a comparative analysis of the advantages and disadvantages of various aspects of the model. At last, the data, application and scale prospect of spatiotemporal fusion models are put forward.

Keywords remote sensing data      spatiotemporal fusion      model      comparison      prospect     
:  TP751.1  
Corresponding Authors: Jihua MENG     E-mail: dongwq@radi.ac.cn;mengjh@radi.ac.cn
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenquan DONG
Jihua MENG
Cite this article:   
Wenquan DONG,Jihua MENG. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 1-11.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.01     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/1
算法
类型
二级分类 名称 参考文献 至少所需中
高空间分辨率
数据个数/期
实验所
用数据
适用尺度 异质性较强
区域适用性
算法特点






基于
小波
变换
的模
小波变换 顾晓鹤等[9] 1 MODIS归一化植
被指数(normalized
difference vegetation
index,NDVI),
TM NDVI
中、
大尺度
较差 所用MODIS NDVI数据为16 d产品,物候差异特征不够明显; 融合数据存在混合像元问题
小波变换 Acerbi-Junior等[10] 1 MODIS,
TM
中、
大尺度
较差 有效地提高了MODIS数据的空间分辨率,为最小失真情况下提高源图像的空间分辨率提供了一个概念框架
小波变换 Wu等[11] 1 MODIS,
TM
中、
大尺度
较差 评价了小波变换在时空融合中的潜力,研究发现选择合适的小波函数和融合方法是小波变换的关键
基于主
成分分析
的模型
主成分
分析
Shevyrnogov等[12] 1 NOAA NDVI,
MSS
中、
大尺度
较差 通过融合MSS亮度分量和NOAA NDVI数据得到高时空分辨率NDVI数据








基于
线性
混合
模型
线性回归
和决策树
Hansen等[13] 1 MODIS,
ETM+
尤其
大尺度
适用于地物单一且反射率呈线性变换的区域,大大减少时空融合所需时间,算法可移植
线性回归 Zhukov等[14] 1 AVHRR,
TM
中、
大尺度
考虑了像元反射率空间可变性的问题,引入窗口技术,为后续研究所采用
线性回归 Maselli[15] 1 AVHRR NDVI,
TM NDVI
中、
大尺度
较差 提出了距离权重的概念,即认为距离目标像元越近,对目标像元的影响越大
线性回归 Busetto等[16] 1 MODIS,
TM
中、
大尺度
较好 提出了光谱权重的概念,主要解决线性混合模型解算过程中像元反射率的空间可变性问题
基于
时空
自适
应融
合模
时空自适应
性反射率
融合模型
Gao等[17] 1 MODIS,
ETM+
中、
小尺度
较好 不仅考虑与目标像元的空间距离和光谱相似性,还考虑了时间上的差异,并且利用邻近光谱相似像元计算中心像元,大大提高了结果精度
针对反射率变
化的时空自适
应融合模型
Hilker等[18] 2 MODIS,
TM,ETM+
中、
小尺度
能够捕获比较短暂的地表变化
改进型时空自
适应融合模型
Zhu等[19] 2 MODIS,
TM
中、
小尺度
根据空间和光谱相似性来估计中心像元,适用于异质性较强的非植被覆盖地区
不同时空分辨
率NDVI的时
空融合模型
蒙继华等[20,21] 1 MODIS,
TM,HJ-1 CCD
中、
小尺度
考虑了物候的影响,直接将算法用于植被指数
Tab.1  Summary of spatiotemporal fusion models
Fig.1  Spatiotemporal fusion of multi-source remote sensing data
[1] 蒙继华, 吴炳方, 李强子 , 等. 农田农情参数遥感监测进展及应用展望[J].遥感信息, 2010(3):122-128.
[1] Meng J H, Wu B F, Li Q Z , et al. Research advances and outlook of crop monitoring with remote sensing at field level[J].Remote Sensing Information, 2010(3):122-128.
[2] Emelyanova I V, McVicar T R,Niel T G V,et al. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics:A framework for algorithm selection[J]. Remote Sensing of Environment, 2013,133:193-209.
doi: 10.1016/j.rse.2013.02.007 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425713000473
[3] Price J C . How unique are spectral signatures?[J]. Remote Sensing of Environment, 1994,49(3):181-186.
doi: 10.1016/0034-4257(94)90013-2 url: http://linkinghub.elsevier.com/retrieve/pii/0034425794900132
[4] Zhang W, Li A N, Jin H A , et al. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data[J]. Remote Sensing, 2013,5(10):5346-5368.
doi: 10.3390/rs5105346 url: http://www.mdpi.com/2072-4292/5/10/5346
[5] 李新, 黄春林, 车涛 , 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007,17(2):163-173.
doi: 10.3321/j.issn:1002-008X.2007.02.003 url: http://www.cqvip.com/Main/Detail.aspx?id=23818609
[5] Li X, Huang C L, Che T , et al. Development of a Chinese land data assimilation system:Its progress and prospects[J]. Progress in Natural Science, 2007,17(2):163-173.
[6] Shabanov N V, Wang Y, Buermann W , et al. Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests[J]. Remote Sensing of Environment, 2003,85(4):410-423.
doi: 10.1016/S0034-4257(03)00017-8 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425703000178
[7] Hilker T, Wulder M A, Coops N C , et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J]. Remote Sensing of Environment, 2009,113(9):1988-1999.
doi: 10.1016/j.rse.2009.05.011 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425709001709
[8] Pohl C, Genderen J L V . Review article multisensor image fusion in remote sensing:Concepts,methods and applications[J]. International Journal of Remote Sensing, 1998,19(5):823-854.
doi: 10.1080/014311698215748 url: http://www.tandfonline.com/doi/abs/10.1080/014311698215748
[9] 顾晓鹤, 韩立建, 王纪华 , 等. 中低分辨率小波融合的玉米种植面积遥感估算[J]. 农业工程学报, 2012,28(3):203-209.
doi: 10.3969/j.issn.1002-6819.2012.03.035
[9] Gu X H, Han L J, Wang J H , et al. Estimation of maize planting area based on wavelet fusion of multi-resolution images[J]. Transactions of the CSAE, 2012,28(3):203-209.
[10] Acerbi-Junior F, Clevers J G P W,Schaepman M E .The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna[J]. International Journal of Applied Earth Observation and Geoinformation, 2006,8(4):278-288.
doi: 10.1016/j.jag.2006.01.001 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243406000043
[11] Wu M Q, Wang C Y.Spatial and temporal fusion of remote sensing data using wavelet transform[C]//Proceedings of 2011 International Conference on Remote Sensing,Environment and Transportation Engineering (RSETE). Nanjing:IEEE, 2011: 1581-1584.
[12] Shevyrnogov A, Trefois P, Vysotskaya G . Multi-satellite data merge to combine NOAA AVHRR efficiency with Landsat-6 MSS spatial resolution to study vegetation dynamics[J]. Advances in Space Research, 2000,26(7):1131-1133.
doi: 10.1016/S0273-1177(99)01130-8 url: http://linkinghub.elsevier.com/retrieve/pii/S0273117799011308
[13] Hansen M C, Roy D P, Lindquist E , et al. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin[J]. Remote Sensing of Environment, 2008,112(5):2495-2513.
doi: 10.1016/j.rse.2007.11.012 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425707004774
[14] Zhukov B, Oertel D, Lanzl F , et al. Unmixing-based multisensor multiresolution image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1212-1226.
doi: 10.1109/36.763276 url: http://ieeexplore.ieee.org/document/763276/
[15] Maselli F . Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses[J]. Remote Sensing of Environment, 2001,75(1):29-38.
doi: 10.1016/S0034-4257(00)00153-X url: http://linkinghub.elsevier.com/retrieve/pii/S003442570000153X
[16] Busetto L, Meroni M, Colombo R . Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment, 2008,112(1):118-131.
doi: 10.1016/j.rse.2007.04.004 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425707001563
[17] Gao F, Masek J, Schwaller M , et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081 url: http://ieeexplore.ieee.org/document/1661809/
[18] Hilker T, Wulder M A, Coops N C , et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007 url: http://linkinghub.elsevier.com/retrieve/pii/S003442570900087X
[19] Zhu X L, Chen J, Gao F , et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010,114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425710001884
[20] 蒙继华, 吴炳方, 杜鑫 , 等. 高时空分辨率NDVI数据集构建方法[J]. 遥感学报, 2011,15(1):44-59.
doi: 10.11834/jrs.20110104 url: http://d.wanfangdata.com.cn/Periodical/ygxb201101004
[20] Meng J H, Wu B F, Du X , et al. Method to construct high spatial and temporal resolution NDVI dataset-STAVFM[J]. Journal of Remote Sensing, 2011,15(1):44-59.
[21] Meng J H, Du X, Wu B F . Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation[J]. International Journal of Digital Earth, 2013,6(3):203-218.
doi: 10.1080/17538947.2011.623189 url: http://www.tandfonline.com/doi/abs/10.1080/17538947.2011.623189
[22] Amolins K, Zhang Y, Dare P . Wavelet based image fusion techniques:An introduction,review and comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007,62(4):249-263.
doi: 10.1016/j.isprsjprs.2007.05.009 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271607000585
[23] Thomas C, Ranchin T, Wald L , et al. Synjournal of multispectral images to high spatial resolution:A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(5):1301-1312.
doi: 10.1109/TGRS.2007.912448 url: http://ieeexplore.ieee.org/document/4447659/
[24] Malenovský Z, Bartholomeus H M , Acerbi-Junior F W,et al.Scaling dimensions in spectroscopy of soil and vegetation[J]. International Journal of Applied Earth Observation and Geoinformation, 2007,9(2):137-164.
doi: 10.1016/j.jag.2006.08.003 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243406000377
[25] 何馨 . 基于多源数据融合的玉米种植面积遥感提取研究[D]. 南京:南京信息工程大学, 2010.
[25] He X . Study on Extraction of Maize Planting Area Based on Multi Source Remote Sensing Fusion Data[D]. Nanjing: Nanjing University of Information Science and Technology, 2010.
[26] Cherchali S, Amram O, Flouzat G . Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes[J]. International Journal of Remote Sensing, 2000,21(4):753-775.
doi: 10.1080/014311600210551 url: http://www.tandfonline.com/doi/abs/10.1080/014311600210551
[27] Haertel V F, Shimabukuro Y E . Spectral linear mixing model in low spatial resolution image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(11):2555-2562.
doi: 10.1109/IGARSS.2004.1369815 url: http://ieeexplore.ieee.org/document/1522616/
[28] Fortin J P, Bernier M, Lapointe S , et al. Estimation of Surface Variables at the Sub-Pixel Level for Use As Input to Climate and Hydrological Models[R].Québec: INRS-Eau, 1998.
[29] Maselli F, Gilabert M A, Conese C . Integration of high and low resolution NDVI data for monitoring vegetation in Mediterranean environments[J]. Remote Sensing of Environment, 1998,63(3):208-218.
doi: 10.1016/S0034-4257(97)00131-4 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425797001314
[30] Potapov P, Hansen M C, Stehman S V , et al. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss[J]. Remote Sensing of Environment, 2008,112(9):3708-3719.
doi: 10.1016/j.rse.2008.05.006 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425708001764
[31] Huang B, Zhang H K . Spatio-temporal reflectance fusion via unmixing:Accounting for both phenological and land-cover changes[J]. International Journal of Remote Sensing, 2014,35(16):6213-6233.
doi: 10.1080/01431161.2014.951097 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.951097
[32] 石月婵, 杨贵军, 李鑫川 , 等. 融合多源遥感数据生成高时空分辨率数据的方法对比[J]. 红外与毫米波学报, 2015,34(1):92-99.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ150323000209v2x5A7
[32] Shi Y C, Yang G J, Li X C , et al. Intercomparison of the different fusion methods for generating high spatial-temporal resolution data[J]. Journal of Infrared and Millimeter Waves, 2015,34(1):92-99.
[33] Zurita-Milla R, Kaiser G, Clevers J G P W,et al. Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics[J]. Remote Sensing of Environment, 2009,113(9):1874-1885.
doi: 10.1016/j.rse.2009.04.011 url: http://linkinghub.elsevier.com/retrieve/pii/S003442570900131X
[34] 邬明权, 王洁, 牛铮 , 等. 融合MODIS与Landsat数据生成高时间分辨率Landsat数据[J]. 红外与毫米波学报, 2012,31(1):80-84.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ120213000132lRoUrX
[34] Wu M Q, Wang J, Niu Z , et al. A model for spatial and temporal data fusion[J]. Journal of Infrared and Millimeter Waves, 2012,31(1):80-84.
[35] Wu M Q, Niu Z, Wang C Y , et al. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J]. Journal of Applied Remote Sensing, 2012,6(1):063507.
doi: 10.1117/1.JRS.6.063507 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JRS.6.063507
[36] 邬明权, 牛铮, 王长耀 . 利用遥感数据时空融合技术提取水稻种植面积[J]. 农业工程学报, 2010,26(2):48-52.
doi: 10.3969/j.issn.1002-6819.2010.z2.010 url: http://www.cqvip.com/QK/90712X/2010S2/3000101824.html
[36] Wu M Q, Niu Z, Wang C Y . Mapping paddy fields by using spatial and temporal remote sensing data fusion technology[J]. Transactions of the CSAE, 2010,26(2):48-52.
[37] 谢登峰, 张锦水, 潘耀忠 , 等. Landsat8和MODIS融合构建高时空分辨率数据识别秋粮作物[J]. 遥感学报, 2015,19(5):791-805.
doi: 10.11834/jrs.20154213 url: http://www.cqvip.com/QK/92457A/201505/666087988.html
[37] Xie D F, Zhang J S, Pan Y Z , et al. Fusion of MODIS and Landsat8 images to generate high spatial-temporal resolution data for mapping autumn crop distribution[J]. Journal of Remote Sensing, 2015,19(5):791-805.
[38] Gevaert C M, García-Haro F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,156:34-44.
doi: 10.1016/j.rse.2014.09.012 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425714003551
[39] Fu D J, Chen B Z, Wang J , et al. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model[J]. Remote Sensing, 2013,5(12):6346-6360.
doi: 10.3390/rs5126346 url: http://www.mdpi.com/2072-4292/5/12/6346
[40] Roy D P, Ju J C, Lewis P , et al. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization,gap filling, and prediction of Landsat data[J]. Remote Sensing of Environment, 2008,112(6):3112-3130.
doi: 10.1016/j.rse.2008.03.009 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425708001065
[41] Wang P J, Gao F, Masek J G . Operational data fusion framework for building frequent landsat-like imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(11):7353-7365.
doi: 10.1109/TGRS.2014.2311445 url: http://ieeexplore.ieee.org/document/6781568/
[42] 李大成, 唐娉, 胡昌苗 , 等. 一种拓展的半物理时空融合算法及其初步应用[J]. 遥感学报, 2014,18(2):307-319.
doi: 10.11834/jrs.20143213 url: http://www.cqvip.com/QK/92457A/201402/49061211.html
[42] Li D C, Tang P, Hu C M , et al. Spatial-temporal fusion algorithm based on an extended semi-physical model and its preliminary application[J]. Journal of Remote Sensing, 2014,18(2):307-319.
[43] Walker J J, De Beurs K M,Wynne R H,et al.Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology[J]. Remote Sensing of Environment, 2012,117:381-393.
doi: 10.1016/j.rse.2011.10.014 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425711003622
[44] Liu H, Weng Q H.Enhancing temporal resolution of satellite imagery for public health studies:A case study of West Nile Virus outbreak in Los Angeles in 2007[J]. Remote Sensing of Environment, 2012,117:57-71.
doi: 10.1016/j.rse.2011.06.023 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425711002835
[45] Singh D . Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(1):59-69.
doi: 10.1016/j.jag.2010.06.007 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243410000711
[46] Singh D . Evaluation of long-term NDVI time series derived from Landsat data through blending with MODIS data[J]. Atmósfera, 2012,25(1):43-63.
[47] 尹晓利, 张丽, 许君一 , 等. 融合数据在草地生物量估算中的应用[J]. 国土资源遥感, 2013,25(4):147-154.doi: 10.6046/gtzyyg.2013.04.24.
doi: 10.6046/gtzyyg.2013.04.24 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201304024
[47] Yin X L, Zhang L, Xu J Y , et al. Application of fused data to grassland biomass estimation[J]. Remote Sensing for Land and Resources, 2013,25(4):147-154.doi: 10.6046/gtzyyg.2013.04.24.
[48] Yang D, Su H B, Yong Y, et al. MODIS-Landsat data fusion for estimating vegetation dynamics:A case study for two ranches in west texas [C]//1st International Electronic Conference on Remote Sensing.Online, 2015: d016.
[49] 康峻, 王力, 牛铮 , 等. 基于局部空间自相关分析的时空数据融合[J]. 遥感技术与应用, 2015,30(6):1176-1181.
doi: 10.11873/j.issn.1004-0323.2015.6.1176 url: 年度引用
[49] Kang J, Wang L, Niu Z , et al. A spatial and temporal fusion model using local spatial association analysis method[J]. Remote Sensing Technology and Application, 2015,30(6):1176-1181.
[50] Shen H F, Wu P H, Liu Y L , et al. A spatial and temporal reflectance fusion model considering sensor observation differences[J]. International Journal of Remote Sensing, 2013,34(12):4367-4383.
doi: 10.1080/01431161.2013.777488 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.777488
[51] Weng Q H, Fu P, Gao F . Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014,145:55-67.
doi: 10.1016/j.rse.2014.02.003 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425714000479
[52] Wu M Q, Zhang X Y, Huang W J , et al. Reconstruction of daily 30 m data from HJ CCD,GF-1 WFV,landsat,and MODIS data for crop monitoring[J]. Remote Sensing, 2015,7(12):16293-16314.
doi: 10.3390/rs71215826 url: http://www.mdpi.com/2072-4292/7/12/15826
[53] Michishita R, Chen L F, Chen J , et al. Spatiotemporal reflectance blending in a wetland environment[J]. International Journal of Digital Earth, 2015,8(5):364-382.
doi: 10.1080/17538947.2014.894146 url: http://www.tandfonline.com/doi/full/10.1080/17538947.2014.894146
[54] Zhang F, Zhu X L, Liu D S . Blending MODIS and Landsat images for urban flood mapping[J]. International Journal of Remote Sensing, 2014,35(9):3237-3253.
doi: 10.1080/01431161.2014.903351 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.903351
[55] Walker J J,de Beurs K M,Wynne R H.Dryland vegetation phenology across an elevation gradient in Arizona,USA,investigated with fused MODIS and Landsat data[J]. Remote Sensing of Environment, 2014,144:85-97.
doi: 10.1016/j.rse.2014.01.007 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425714000200
[56] Wu P H, Shen H F, Zhang L P , et al. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature[J]. Remote Sensing of Environment, 2015,156:169-181.
doi: 10.1016/j.rse.2014.09.013 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425714003563
[57] Zhang B H, Zhang L, Xie D , et al. Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation[J]. Remote Sensing, 2015,8(1):10.
doi: 10.3390/rs8010010 url: http://www.mdpi.com/2072-4292/8/1/10
[58] Dong T F, Liu J G, Qian B D , et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,49:63-74.
doi: 10.1016/j.jag.2016.02.001 url: http://linkinghub.elsevier.com/retrieve/pii/S0303243416300137
[59] Wu B, Huang B, Cao K , et al. Improving spatiotemporal reflectance fusion using image inpainting and steering kernel regression techniques[J]. International Journal of Remote Sensing, 2017,38(3):706-727.
doi: 10.1080/01431161.2016.1271471 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1271471
[60] Zhu X L, Helmer E H, Gao F , et al. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016,172:165-177.
doi: 10.1016/j.rse.2015.11.016 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425715302042
[61] Yang J C, Wright J, Huang T S , et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(11):2861-2873.
doi: 10.1109/TIP.2010.2050625 pmid: 20483687 url: http://ieeexplore.ieee.org/document/5466111/
[62] Huang B, Song H H . Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):3707-3716.
doi: 10.1109/TGRS.2012.2186638 url: http://ieeexplore.ieee.org/document/6169983/
[63] Song H H, Huang B . Spatiotemporal satellite image fusion through one-pair image learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4):1883-1896.
doi: 10.1109/TGRS.2012.2213095 url: http://ieeexplore.ieee.org/document/6329421/
[64] Teillet P M, Fedosejevs G, Thome K J , et al. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain[J]. Remote Sensing of Environment, 2007,110(3):393-409.
doi: 10.1016/j.rse.2007.03.003 url: http://www.sciencedirect.com/science/article/pii/S003442570700123X
[65] 仲波, 柳钦火, 单小军 , 等. 多源光学遥感数据归一化处理技术与方法[M]. 北京: 科学出版社, 2015.
[65] Zhong B, Liu Q H, Shan X J , et al. Normalization Processing Technology of Multi-Source Optical Remote Sensing Data[M]. Beijing: Science Press, 2015.
[66] Chen X X, Vierling L, Deering D . A simple and effective radiometric correction method to improve landscape change detection across sensors and across time[J]. Remote Sensing of Environment, 2005,98(1):63-79.
doi: 10.1016/j.rse.2005.05.021 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425705002026
[67] 余晓敏, 邹勤 . 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012,35(6):8-12.
doi: 10.3969/j.issn.1672-5867.2012.06.003 url: http://d.wanfangdata.com.cn/Periodical/dbch201206003
[67] Yu X M, Zou Q . Methods of radiometric normalization for multi-temporal remote sensing images:A review[J]. Geomatics and Spatial Information Technology, 2012,35(6):8-12.
[68] Hong G, Zhang Y . A comparative study on radiometric normalization using high resolution satellite images[J]. International Journal of Remote Sensing, 2008,29(2):425-438.
doi: 10.1080/01431160601086019 url: http://www.tandfonline.com/doi/abs/10.1080/01431160601086019
[69] 耿丽英, 马明国 . 长时间序列NDVI数据重建方法比较研究进展[J]. 遥感技术与应用, 2014,29(2):362-368.
doi: 10.11873/j.issn.1004-0323.2014.2.0362 url: http://d.wanfangdata.com.cn/Periodical_ygjsyyy201402025.aspx
[69] Geng L Y, Ma M G . Advance in method comparison of reconstructing remote sensing time series data sets[J]. Remote Sensing Technology and Application, 2014,29(2):362-368.
[70] Gallo K, Ji L, Reed B , et al. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data[J]. Remote Sensing of Environment, 2005,99(3):221-231.
doi: 10.1016/j.rse.2005.08.014 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425705002804
[71] Leeuwen W J D V,Orr B J, Marsh S E,et al.Multi-sensor NDVI data continuity:Uncertainties and implications for vegetation monitoring applications[J]. Remote Sensing of Environment, 2006,100(1):67-81.
doi: 10.1016/j.rse.2005.10.002 url: http://linkinghub.elsevier.com/retrieve/pii/S003442570500341X
[72] Xiao X M, Boles S, Frolking S , et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006,100(1):95-113.
doi: 10.1016/j.rse.2005.10.004 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425705003433
[73] Brown J C, Kastens J H, Coutinho A C , et al. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data[J]. Remote Sensing of Environment, 2013,130:39-50.
doi: 10.1016/j.rse.2012.11.009 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425712004336
[74] Moran M S, Clarke T R, Inoue Y , et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994,49(3):246-263.
doi: 10.1016/0034-4257(94)90020-5 url: http://linkinghub.elsevier.com/retrieve/pii/0034425794900205
[75] 赵春江 . 农业遥感研究与应用进展[J]. 农业机械学报, 2014,45(12):277-293.
doi: 10.6041/j.issn.1000-1298.2014.12.041 url: http://d.wanfangdata.com.cn/Periodical_nyjxxb201412041.aspx
[75] Zhao C J . Advances of research and application in remote sensing for agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(12):277-293.
[76] Haboudane D, Miller J R, Tremblay N , et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002,81(2-3):416-426.
doi: 10.1016/S0034-4257(02)00018-4 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425702000184
[77] Liu L, Wang J, Bao Y , et al. Predicting winter wheat condition,grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images[J]. International Journal of Remote Sensing, 2006,27(4):737-753.
doi: 10.1080/01431160500296867 url: http://www.tandfonline.com/doi/abs/10.1080/01431160500296867
[78] Zhong L H, Gong P, Biging G S . Efficient corn and soybean mapping with temporal extendability:A multi-year experiment using Landsat imagery[J]. Remote Sensing of Environment, 2014,140:1-13.
doi: 10.1016/j.rse.2013.08.023 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425713002812
[1] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[5] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[6] XIAO Yehui, SONG Nidi, MENG Panpan, WANG Peijun, FAN Shenglong. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm[J]. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
[7] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[8] YANG Yunxue, ZHANG Yanfang. Temporal-spatial evolutionary characteristics of ecological sensitivity in Yanhe River basin based on spatial distance index[J]. Remote Sensing for Natural Resources, 2021, 33(3): 229-237.
[9] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[10] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[11] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[12] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[13] MA Xinping, WU Tao, YU Yuyang. A study of runoff scenario prediction in the upper reaches of Hanjiang River based on SWAT model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 174-182.
[14] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[15] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech