Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 37-46     DOI: 10.6046/zrzyyg.2021214
|
Principal component selection method for hyperspectral remote sensing images based on spatial statistics
SUN Xiao1(), PENG Junhuan2(), ZHAO Feng3, WANG Xiaoyang1, LYU Jie2, ZHANG Dengfeng4
1. Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China
2. School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
3. Urumqi Natural Resources Comprehensive Survey Center, China Geological Survey, Urumqi 830057, China
4. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710100, China
Download: PDF(10623 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The principal component analysis is a widely used method for dimensionality reduction of hyperspectral remote sensing images. In task-oriented work, the principal component selection method based on cumulative variance contribution rate is not ideal. To address the problem of principal component selection after principal component analysis transformation, a method of principal component selection based on spatial statistics is proposed. The selection of principal components is performed by calculating the values of the semi-variogram parameter range and partial sill/sill of each principal component. The magnitude of a range is used to judge the range of spatial correlation of each principal component, and the partial sill/sill is used to judge the strength of spatial correlation of each principal component. The simulation proves that the variable range and partial sill/sill can effectively express the range and strength of spatial correlation of hyperspectral remote sensing images. Based on the experiment of real hyperspectral remote sensing images, the empirical threshold of principal component selection is determined from subjective and objective aspects, that is, the range is 2.5, and the partial sill/sill is 0.2. According to the classification results based on the support vector machine algorithm, compared with traditional methods, the principal components with better image quality can be screened by using variable range and partial sill/sill, which can not only achieve the purpose of dimensionality reduction, but also ensure high classification accuracy.

Keywords hyperspectral      principal component analysis      spatial statistics      semi-variogram      support vector machine     
ZTFLH:  P962  
Corresponding Authors: PENG Junhuan     E-mail: sunxiao@mail.cgs.gov.cn;pengjunhuan@163.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao SUN
Junhuan PENG
Feng ZHAO
Xiaoyang WANG
Jie LYU
Dengfeng ZHANG
Cite this article:   
Xiao SUN,Junhuan PENG,Feng ZHAO, et al. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021214     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/37
Fig.1  Flowchart of algorithm
Fig.2  Simulation images (different grid sizes W=1,3,…,23; SNR=10,20,30,45)
Fig.3  Results of the range of the simulation image
Fig.4  Results of the partial sill/sill of the simulation image
Fig.5  Indian Pines data set
Fig.6  Pavia university data set
Fig.7  Salinas data set
Fig.8  The results of the semi-variogram parameters of real data
Fig.9  Thumbnails of each principal component after the PCA transformation of the Indian Pines data set
不同方法 筛选的主成分编号
PC(2~0.25) 1~8,10~21,23~25,28,38,66,68,88,92,101,108,109
PC(2~0.2) 1~8,10~25,28,29,38,55,59,66,88,92,101,103,108,109
PC(2.5~0.25) 1~8,10~21,23~25,28,38,66,68,88,92,101
PC(2.5~0.2) 1~8,10~25,28,29,38,59,66,68,88,92,101,103
Tab.1  Principal component selected by different thresholds in Indian Pines data set
数据集 PC
(2~0.25)
PC
(2~0.2)
PC
(2.5~0.25)
PC
(2.5~0.2)
Indian Pines 0.912 0.912 0.905 0.906
Pavia U 0.856 0.881 0.858 0.883
Salinas 0.953 0.953 0.954 0.953
Tab.2  Kappa coefficient of different thresholds
Fig.10  Classification results of Indian Pines, Pavia U and Salinas data sets
数据集 PC
(0.99)
PC
(10%)
PC
(Entropy)
PC
(2.5~0.2)
Indian Pines 0.864 0.853 0.899 0.906
Pavia U 0.718 0.884 0.884 0.883
Salinas 0.910 0.952 0.951 0.953
Tab.3  Kappa coefficient of different methods
Fig.11  Classification results of Indian Pines, Pavia U and Salinas data sets
地物种类 PC
(0.99)
PC
(10%)
PC
(Entropy)
PC
(2.5~0.2)
塔楼 100 100 100 100
建筑物 74.02 75.2 81.45 79.53
林地 98.89 98.89 99.43 99.51
小麦地 100 100 100 100
大豆地 84.46 79.77 98.4 97.95
大豆略耕地 86.78 85.56 90.82 92.7
大豆未耕地 89.4 89.18 88.26 86.98
燕麦地 77.78 77.78 60 88.89
干草地 100 100 100 100
牧草已割地 81.82 90.91 94.12 100
草树地 100 99.77 100 100
牧草地 100 99.24 100 100
苜蓿地 85.71 80 86.84 85.71
玉米地 95.95 93.92 96.95 97.97
玉米未耕地 73.32 73.08 80.39 82.93
玉米略耕地 62.14 57.96 65.44 65.54
Tab.4  Prod. Acc of Indian Pines data set
地物种类 PC
(0.99)
PC
(10%)
PC
(Entropy)
PC
(2.5~0.2)
草地 95.3 94.72 94.72 93.54
砂砾 42.87 72.63 72.63 72.00
金属板 100 99.91 99.91 99.82
裸地 31.51 79.64 79.64 81.02
柏油房顶 37.84 67.86 67.86 74.26
阴影 100 100 100 99.83
砖块 88.78 94.31 94.31 93.75
94.58 95.18 95.18 95.41
沥青路面 94.45 97.07 97.07 96.44
Tab.5  Prod. Acc of Pavia U data set
地物种类 PC
(0.99)
PC
(10%)
PC
(Entropy)
PC
(2.5~0.2)
葡萄园垂直架子 98.23 99.92 99.84 99.83
未培育的葡萄园1 46.83 74.3 72.72 75.26
长叶莴苣_7wk 98.66 99.81 99.04 99.81
长叶莴苣_6wk 98.95 99.48 99.12 99.48
长叶莴苣_5wk 100 100 99.89 100
长叶莴苣_4wk 100 100 100 100
衰败的绿色杂草 99.35 100 100 100
生长中的葡萄园 100 100 100 100
未培育的葡萄园2 94.21 94.62 94.62 94.77
芹菜 100 100 100 100
作物残留 100 100 100 100
平整的休耕地 99.83 100 100 100
粗糙的休耕地 100 100 100 100
休耕地 100 100 100 100
椰菜2 99.95 100 100 100
椰菜1 99.49 99.91 100 100
Tab.6  Prod. Acc of Salinas data set
数据集 不同方法 筛选的主成分编号 个数
Indian Pines PC(0.99) 1~25 25
PC(10%) 1~20 20
PC(Entropy) 1~46,49 47
PC(2.5~0.2) 1~8,10~25,28,29,38,59,66,68,88,92,101,103 34
Pavia U PC(0.99) 1~4 4
PC(10%) 1-10 10
PC(Entropy) 1-10 10
PC(2.5~0.2) 1~10,16,19,23,24,43,71 16
Salinas PC(0.99) 1~3 3
PC(10%) 1~20 20
PC(Entropy) 1~100 100
PC(2.5~0.2) 1~10,12,15~23,25,28,29,34,42,61,66,75,77,118,126,134 32
Tab.7  Principal component information selected by different data sets
[1] Hughes G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1):55-63.
doi: 10.1109/TIT.1968.1054102 url: http://ieeexplore.ieee.org/document/1054102/
[2] Chang C-I. Hyperspectral Data Exploitation:Theory and Applications[M]. John Wiley & Sons Inc,Hoboken,New Jersey, 2007,205.
[3] 宋海峰, 陈广胜, 杨巍巍. 基于PCA的高光谱遥感图像分类[J]. 测绘工程, 2017, 26(12):17-20,26.
[3] Song H F, Chen G S, Yang W W. Principal component analysis for hyper spectral image classification[J]. Engineering of Surveying and Mapping, 2017, 26(12):17-20,26.
[4] Jolliffe I T. Principal Component Analysis[M]. Wiley, 2nd edition, 2002.
[5] Pu R, Gong P, Tian Y, et al. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery[J]. Environmental Monitoring and Assessment, 2008, 140(1-3):15-32.
doi: 10.1007/s10661-007-9843-7 url: http://link.springer.com/10.1007/s10661-007-9843-7
[6] Chen G, Qian S. Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets,neighbour shrinking and principal component analysis[J]. International Journal of Remote Sensing, 2009, 30(18):4889-4895.
doi: 10.1080/01431160802653724 url: https://www.tandfonline.com/doi/full/10.1080/01431160802653724
[7] Canty M J, Nielsen A A. Linear and kernel methods for multivariate change detection[J]. Computers & Geosciences, 2012, 38(1):107-114.
doi: 10.1016/j.cageo.2011.05.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0098300411001889
[8] Foca G, Ferrari C, Ulrici A, et al. The potential of spectral and hyperspectral-imaging techniques for bacterial detection in food:A case study on lactic acid bacteria[J]. Talanta, 2016, 2016(153):111-119.
[9] Li B, Hou B, Zhang D, et al. Pears characteristics (soluble solids content and firmness prediction,varieties) testing methods based on visible-near infrared hyperspectral imaging[J]. Optik International Journal for Light and Electron Optics, 2016, 127(5):2624-2630.
doi: 10.1016/j.ijleo.2015.11.193 url: https://linkinghub.elsevier.com/retrieve/pii/S0030402615018264
[10] 韩彦岭, 崔鹏霞, 杨树瑚, 等. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2):11-19.doi: 10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
[10] Han Y L, Gui P X, Yang S H, et al. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land and Resources, 2021, 33(2):11-19.doi: 10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
[11] Chang Y, Wang Y, Liu T, et al. Fault diagnosis of a mine hoist using PCA and SVM techniques[J]. Journal of China University of Mining and Technology, 2008, 18(3):327-331.
doi: 10.1016/S1006-1266(08)60069-3 url: https://linkinghub.elsevier.com/retrieve/pii/S1006126608600693
[12] Li C, Liu L, Lei Y, et al. Clustering for HSI hyperspectral image with weighted PCA and ICA[J]. Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology, 2017, 32(5):3729-3737.
[13] 臧卓, 林辉, 杨敏华. 利用PCA算法进行乔木树种高光谱数据降维与分类[J]. 测绘科学, 2014, 188(2):146-149.
[13] Zang Z, Lin H, Yang M H. Dimension reduction and classification of hyperspectral data of tree species using PCA algorithm[J]. Science of Surveying and Mapping, 2014, 188(2):146-149.
[14] 黄鸿, 曲焕鹏. 基于半监督稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学精密工程, 2014, 22(2):434-442.
[14] Huang H, Qu H P. Hyperspectral remote sensing image classification based on SSDE[J]. Optics and Precision Engineering, 2014, 22(2):434-442.
doi: 10.3788/OPE.20142202.0434 url: http://www.opticsjournal.net/Abstract.htm?id=OJ140303000183D0FcIf
[15] Lee C, Youn S, Jeong T, et al. Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7):1491-1495.
doi: 10.1109/LGRS.2015.2409897 url: http://ieeexplore.ieee.org/document/7063895/
[16] 袁林, 胡少兴, 张爱武, 等. 基于深度学习的高光谱图像分类方法[J]. 人工智能与机器人研究, 2017, 6(1):31-39.
[16] Yuan L, Hu S X, Zhang A W, et al. A classification method for hyperspectral imagery based on deep learning[J]. Artificial Intelligence and Robotics Research, 2017, 6(1):31-39.
doi: 10.12677/AIRR.2017.61005 url: http://www.HansPub.org/journal/PaperDownload.aspx?DOI=10.12677/AIRR.2017.61005
[17] 臧卓, 林辉, 杨敏华. ICA与PCA在高光谱数据降维分类中的对比研究[J]. 中南林业科技大学学报, 2011, 31(11):18-22.
[17] Zang Z, Lin H, Yang M H. Comparative study on descending dimension classification of hyperspectral data between ICA algorithm and PCA algorithm[J]. Journal of Central South University of Forestry & Technology, 2011, 31(11):18-22.
[18] 叶珍, 何明一. PCA与移动窗小波变换的高光谱决策融合分类[J]. 中国图象图形学报, 2015, 20(1):132-139.
[18] Ye Z, He M Y. PCA and windowed wavelet transform for hyperspectral decision fusion classification[J]. Journal of Image and Graphics, 2015, 20(1):132-139.
[19] Abdolmaleki M, Fathianpour N, Tabaei M. Evaluating the performance of the wavelet transform in extracting spectral alteration features from hyperspectral images[J]. International Journal of Remote Sensing, 2018, 2018:1-19.
[20] Mather P, Koch M. Computer processing of remotely-sensed images[M]. John Wiley & Sons,Ltd, 2011,265.
[21] Rodarmel C, Shan J. Principal component analysis for hyperspectral image classification[J]. Surveying and Land Information Systems, 2002, 62(2):115-122.
[22] Ibarrola-Ulzurrun E, Marcello J, Gonzalo-Martin C. Assessment of component selection strategies in hyperspectral imagery[J]. Entropy, 2017, 19:1-17.
doi: 10.3390/e19010001 url: http://www.mdpi.com/1099-4300/19/1/1
[23] Stephan K, Hibbitts C, Hoffmann H, et al. Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis:Applications to Galileo NIMS data[J]. Planetary and Space Science, 2008, 56(3-4):406-419.
doi: 10.1016/j.pss.2007.11.021 url: https://linkinghub.elsevier.com/retrieve/pii/S0032063307003613
[24] Zheng W, Lai J, Yuen P. GA-Fisher:A new LDA-based face recognition algorithm with selection of principal components[J]. IEEE Transactions on Systems,Man and Cybernetics,Part B (Cybernetics), 2005, 35(5):1065-1078.
doi: 10.1109/TSMCB.2005.850175 url: http://ieeexplore.ieee.org/document/1510780/
[25] Zhang X, Li R, Jiao L. Feature extraction combining PCA and immune clonal selection for hyperspectral remote sensing image classification[C]. International Conference on Artificial Intelligence & Computational Intelligence,IEEE, 2009.
[26] Tobler W. Cellular geography[M]. Springer Netherlands, 1979,379-386.
[27] 戴平生, 陈建宝. 空间统计学研究应用综述[C]// 烟台: 国际应用统计学术研讨会, 2008.
[27] Dai P S, Chen J B. Review of spatial statistics research applications[C]// Yantai: International Symposium on Applied Statistics, 2008.
[28] Liu Q, Sun J, Chen Y, et al. Spatial variability of soil heavy metals at different sampling scales[J]. Chinese Journal of Soil Science, 2009, 40(6):1406-1410.
[29] 刘昌振, 舒红, 张志, 等. 基于多尺度分割的高分遥感图像变异函数纹理提取和分类[J]. 国土资源遥感, 2015, 27(4):47-53.doi: 10.6046/gtzyyg.2015.04.08.
doi: 10.6046/gtzyyg.2015.04.08
[29] Liu C Z, Shu H, Zhang Z, et a1. Variogram texture extraction and classification of high resolution remote sensing images based on multi-resolution segmentation[J]. Remote Sensing for Land and Resources, 2015, 27(4):47-53.doi: 10.6046/gtzyyg.2015.04.08.
doi: 10.6046/gtzyyg.2015.04.08
[30] 张亮. 基于PCA和SVM的高光谱遥感图像分类研究[J]. 光学技术, 2008, 34(s1):184-187.
[30] Zhang L. Study on the hyperspectral remote sensed image classify based on PCA and SVM[J]. Optical Technique, 2008, 34(s1):184-187.
[31] 王华, 李卫卫, 李志刚, 等. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3):63-71.doi: 10.6046/zrzyyg.2020344.
doi: 10.6046/zrzyyg.2020344
[31] Wang H, Li W W, Li Z G, et al. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources 2021, 33(3):63-71.doi: 10.6046/zrzyyg.2020344.
doi: 10.6046/zrzyyg.2020344
[32] Goovaerts P. Geostatistics for natural resources evaluation[M]. NewYork City: Oxford University Press, 1997,266.
[33] Cressie N. Fitting variogram models by weighted least squares[J]. Mathematical Geology, 1985, 17(5):563-586.
[34] 矫希国, 刘超. 变差函数的参数模拟[J]. 物探化探计算技术, 1996, 18(2):157-161.
[34] Jiao X G, Liu C. Estimation of variation parameter[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1996, 18(2):157-161.
[1] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[2] LI Zhixin, WANG Mengfei, JIA Weijie, JI Song, WANG Yufei. A method for identifying the number of building floors based on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3): 97-106.
[3] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[4] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[5] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[6] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[7] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[8] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[9] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[10] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[11] ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
[12] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[13] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[14] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[15] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech