Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 20-29     DOI: 10.6046/zrzyyg.2021354
|
Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model
XU Zixing1(), JI Min1(), ZHANG Guo2, CHEN Zhenwei2
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
2. National Key Laboratory of Surveying and Remote Sensing Information Engineering, Wuhan University, Wuhan 430079, China
Download: PDF(6958 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Predicting the subsequent subsidence in mining areas according to the law of mining subsidence is the key to assessing mining risks and adjusting mining planning. This study determined the available conditions of the logistic model for mining subsidence prediction through analysis and simulation experiments and proposed a method for the dynamic prediction of mining subsidence based on small baseline subset (SBAS)-interferometric synthetic aperture radar (InSAR) technology and the logistic model. Firstly, the time-series subsidence data of a mining area was obtained using the SBAS-InSAR technology. Then, taking the time series subsidence data as the data for fitting, the parameters of the logistic model were calculated pixel by pixel by using the trust region algorithm. Then, the pixel range in which the subsequent subsidence can be predicted was determined according to the available conditions of the logistic model. Finally, according to the Logistic model, the subsequent subsidence within the predictable range was predicted. This method was applied to a certain mining area in Erdos City, Inner Mongolia for tests, and the prediction results were verified using the InSAR monitoring results of corresponding dates. The predicted results after 36 days and 108 days of ming had the root mean square error (RMSE) of 0.010 1 m and 0.023 6 m, respectively, and their proportion with prediction errors of less than 0.03 m reached 98.9% and 89.3%, respectively. These results indicate that the method for dynamic prediction proposed in this study has high prediction accuracy.

Keywords SBAS-InSAR      Logistic model      coal mining subsidence      dynamic prediction     
ZTFLH:  TD325  
  P237  
Corresponding Authors: JI Min     E-mail: zixingxu@whu.edu.cn;jamesjimin@126.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zixing XU
Min JI
Guo ZHANG
Zhenwei CHEN
Cite this article:   
Zixing XU,Min JI,Guo ZHANG, et al. Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 20-29.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021354     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/20
Fig.1  The influence of different coverage of the fitting data on the subsidence process on the fitting accuracy
Fig.2  Flow chart of calculating Logistic model parameters by trust region algorithm
Fig.3  Flow chart of subsidence dynamic prediction method in mining area
Fig.4  Location of the study mining area
序号 日期 入射角/(°) 序号 日期 入射角/(°) 序号 日期 入射角/(°)
1 2017/9/20 33.914 15 2018/3/19 33.910 29 2018/9/27 33.915
2 2017/10/2 33.913 16 2018/3/31 33.912 30 2018/10/9 33.912
3 2017/10/14 33.912 17 2018/4/12 33.917 31 2018/10/21 33.912
4 2017/10/26 33.910 18 2018/5/6 33.915 32 2018/11/2 33.910
5 2017/11/7 33.909 19 2018/5/18 33.915 33 2018/11/14 33.908
6 2017/11/19 33.909 20 2018/5/30 33.916 34 2018/11/26 33.908
7 2017/12/1 33.908 21 2018/6/11 33.915 35 2018/12/8 33.909
8 2017/12/13 33.908 22 2018/6/23 33.916 36 2018/12/20 33.906
9 2017/12/25 33.907 23 2018/7/5 33.915 37 2019/1/1 33.907
10 2018/1/6 33.907 24 2018/7/17 33.917 38 2019/1/25 33.908
11 2018/1/30 33.909 25 2018/7/29 33.915 39 2019/2/6 33.908
12 2018/2/11 33.909 26 2018/8/22 33.915 40 2019/2/18 33.909
13 2018/2/23 33.909 27 2018/9/3 33.915 轨道号 Path: 11 Frame: 121
14 2018/3/7 33.910 28 2018/9/15 33.917 极化方式 VV
Tab.1  Parameters of Sentinel-1A images
Fig.5-1  Time series subsidence
Fig.5-2  Time series subsidence
Fig.6  Logistic model fitting situation
Fig.7  Prediction subsidence diagram
Fig.8  Consistency verification diagram
Fig.9  Statistical bar graph of prediction error
Fig.10  Spatial distribution of prediction error
Fig.11  Relationship between the occurrence time of minimum acceleration point and prediction error
[1] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991.
[1] He G Q, Yang L, Ling G D, et al. Mining subsidence[M]. Xuzhou: China University of Mining and Technology Press, 1991.
[2] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
[2] Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Journal of Geodesy and Geoinformation Science, 2017, 46(10):1717-1733.
[3] 葛大庆, 王艳, 范景辉, 等. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 9(4):14-22.doi: 10.6046/gtzyyg.2007.04.04.
doi: 10.6046/gtzyyg.2007.04.04
[3] Ge D Q, Wang Y, Fan J H, et al. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems[J]. Remote Sensing for Land and Resources, 2007, 19(4):14-22.doi: 10.6046/gtzyyg.2007.04.04.
doi: 10.6046/gtzyyg.2007.04.04
[4] 刘一霖, 张勤, 黄海军, 等. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
doi: 10.6046/gtzyyg.2017.02.21
[4] Liu Y L, Zhang Q, Huang H J, et al. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR[J]. Remote Sensing for Land and Resources, 2017, 29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
doi: 10.6046/gtzyyg.2017.02.21
[5] Chen Y, Tong Y, Tan K. Coal mining deformation monitoring using SBAS-InSAR and offset tracking:A case study of Yu County,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020(13):6077-6087.
[6] 刘志敏, 李永生, 张景发, 等. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06
[6] Liu Z M, Li Y S, Zhang J F, et al. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. Remote Sensing for Land and Resources, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06
[7] Yuan M, Li M, Liu H, et al. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions[J]. Remote Sensing, 2021, 13(16):3107.
doi: 10.3390/rs13163107 url: https://www.mdpi.com/2072-4292/13/16/3107
[8] Knothe S. Time influence on a formation of a subsidence surface[J]. Archiwum Gornicwai Huticwa Krakow, 1952, 1(1):1-3.
[9] 张兵, 崔希民, 赵玉玲, 等. 优化分段Knothe时间函数求参方法[J]. 煤炭学报, 2018, 43(12):3379-3386.
[9] Zhang B, Cui X M, Zhao Y L, et al. Parameter calculation method for optimized segmented Knothe time function[J]. Journal of China Coal Society, 2018, 43(12):3379-3386.
[10] 万芳芳, 罗文柯, 李树清, 等. 厚松散层矿区地表动态移动预计研究[J]. 煤炭工程, 2018, 50(4):105-109.
[10] Wan F F, Luo W K, Li S Q, et al. Study on prediction of surface dynamic movement in thick unconsolidated mining area[J]. Coal Engineering, 2018, 50(4):105-109.
[11] 高建, 陈炳乾, 冯遵德. 一种基于TerraSAR数据的矿区InSAR最大可检测动态形变梯度模型[J]. 大地测量与地球动力学, 2020, 40(11):1175-1181.
[11] Gao J, Chen B Q, Feng Z D. A maximum detectable dynamic deformation gradient model of InSAR based on TerraSAR data[J]. Journal of Geodesy and Geodynamics, 2020, 40(11):1175-1181.
[12] 王小华, 胡海峰, 廉旭刚. 基于Weibull时间序列函数与负指数法的动态沉陷预计[J]. 金属矿山, 2015(8):158-162.
[12] Wang X H, Hu H F, Lian X G. Dynamic subsidence prediction method based on negative exponential method and Weibull time sequence function[J]. Metal Mine, 2015(8):158-162.
[13] 白斌, 张文泉. 厚松散层开采松散层沉降时间序列模型研究[J]. 煤炭技术, 2018, 37(9):176-177.
[13] Bai B, Zhang W Q. Study on time series model of loose layer settlement in thick loose layer mining[J]. Coal Technology, 2018, 37(9):176-177.
[14] 张兵, 崔希民, 胡青峰. 开采沉陷动态预计的正态分布时间函数模型研究[J]. 煤炭科学技术, 2016, 44(4):140-145,174.
[14] Zhang B, Cui X M, Hu Q F. Study on normal distributed time function model to dynamically predict mining subsidence[J]. Coal Science and Technology, 2016, 44(4):140-145,174.
[15] 张凯, 胡海峰, 廉旭刚, 等. 地表动态沉陷预测正态时间函数模型优化研究[J]. 煤炭科学技术, 2019, 47(9):235-240.
[15] Zhang K, Hu H F, Lian X G, et al. Optimization of surface dynamic subsidence prediction normal time function model[J]. Coal Science and Technology, 2019, 47(9):235-240.
[16] 张文志, 邹友峰, 任筱芳. Logistic模型在开采沉陷单点预测中的研究[J]. 采矿与安全工程学报, 2009, 26(4):486-489.
[16] ZHANG W Z, Zou Y F, Ren X F. Research on Logistic model in forecasting subsidence single—point during mining[J]. Journal of Mining and Safety Engineering, 2009, 26(4):486-489.
[17] 杨泽发, 易辉伟, 朱建军, 等. 基于InSAR时序形变的矿区全盆地沉降时空演化规律分析[J]. 中国有色金属学报, 2016, 26(7):1515-1522.
[17] Yang Z F, Yi H W, Zhu J J, et al. Spatio-temporal evolution law analysis of whole mining subsidence basin based on InSAR-derived time-series deformation[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(7):1515-1522.
[18] 尹宏杰, 朱建军, 李志伟, 等. 基于SBAS的矿区形变监测研究[J]. 测绘学报, 2011, 40(1):52-58.
[18] Yin H J, Zhu J J, Li Z W, et al. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):52-58.
[19] 姜兆英. 短基线集InSAR形变模型的不适定问题解算方法研究[D]. 青岛: 山东科技大学, 2018.
[19] Jiang Z Y. Study on the solving methods of the ill-Posed problems of the SBAS InSAR deformation model[D]. Qingdao: Shandong University of Science and Technology, 2018.
[20] 崔兆诚. 无约束优化问题改进的信赖域方法[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[20] Cui Z C. The improved trust region methods for unconstrained optimization problems[D]. Harbin: Harbin Institute of Technology, 2011.
[1] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[2] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[3] LUO Xuewei, XIANG Xiqiong, LYU Yadong. PS correction of InSAR time series deformation monitoring for a certain collapse in Longli County[J]. Remote Sensing for Natural Resources, 2022, 34(3): 82-87.
[4] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[5] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[6] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[7] SUN Xiaopeng, LU Xiaoya, WEN Xuehu, ZHEN Yan, WANG Lei. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 123-129.
[8] LIU Qing-sheng, LIU Gao-huan, LIN Qi-zhong, WANG Zhi-gang . REMOTE SENSING IMAGE CLASSIFICATION BASED ON LOGISTIC MODEL[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(1): 36-41,65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech