Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 264-273     DOI: 10.6046/zrzyyg.2022217
|
Influence of urban rivers and their surrounding land on the surface thermal environment
FENG Xiaogang1(), ZHAO Yi2, LI Meng1, ZHOU Zaihui1, LI Fengxia1, WANG Yuan1, YANG Yongquan3
1. College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. CCC Urban and Rural Construction Planning and Design Institute, Wuhan 430050, China
3. Shandong Province Metallurgical Engineering Co., Ltd., Jinan 250101, China
Download: PDF(6284 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

As an integral component of the urban ecosystem, water bodies hold considerable ecological significance for mitigating the urban heat island effect and the thermal environment of human habitat. With multi-temporal Landsat and SPOT data as experimental data, this study proposed a method for determining surface emissivity for mixed pixels based on the principle behind the construction of the support vector machine (SVM) optimal endmember subset. Then, this study employed the surface emissivity determination method to analyze the coupling relationship of the water bodies and surrounding land of the Bahe River with the surface temperature using a mono-window algorithm. The results are as follows: ① The SVM optimal endmember subset construction method for mixed pixels yielded an error of surface emissivity less than 0.005 (R = 0.832) relative to the MODIS LSE product. This result indicates that the method has high accuracy and thus can be used to extract surface emissivity. ② Over the past 27 years, the land types and local surface temperature patterns on both sides of the Bahe River have changed significantly, with a sharp increase in construction land and a significant warming trend. The effects of land use types surrounding the Bahe River on surface temperature varied in different periods, with construction land, grassland, water bodies, and forest land being the principal land use types affecting the thermal environment on both sides of the Bahe River. The cooling effects of water bodies, forest land, grassland, and cultivated land are in the order of water bodies > forest land > grassland > cultivated land. ③ The effects of land use types on both sides of the Bahe River on local temperatures exhibited spatial differences during the same period. To the east of the Bahe River, the water bodies, forest land, grassland, and cultivated land show significant cooling effects. In contrast, to the west of the river, only water bodies, forest land, and grassland showed significant cooling effects. This study contributes to the proper understanding of the influence of urban rivers on the local thermal environment, providing a scientific reference for mitigating the local thermal environment of urban rivers and their surrounding areas.

Keywords surface emissivity      thermal environment      urban heat island effect      water body      Bahe River     
ZTFLH:  TP79  
  TP701  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaogang FENG
Yi ZHAO
Meng LI
Zaihui ZHOU
Fengxia LI
Yuan WANG
Yongquan YANG
Cite this article:   
Xiaogang FENG,Yi ZHAO,Meng LI, et al. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022217     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/264
Fig.1  Location of study area
辐射常量 Landsat5
TM6波段
Landsat7
ETM+6
波段
Landsat8
TIRS10
波段
Landsat8
TIRS11
波段
K1/(W·m-2·sr-1·μm-1) 607.76 666.09 774.89 480.89
K2/K 1 284.30 1 282.71 1 321.08 1 201.14
Tab.1  Values of radiation constants of Landsat5/7/8 TIR bands
Fig.2  Land use of Bahe River in 1992, 2000, 2010 and 2019
年份 区位 建设用地 草地 耕地 林地 裸地 水体
1992年 灞河以东 15.549 8.046 7.873 2.240 0.601 0.774
灞河以西 21.219 8.159 4.001 1.986 0.747 0.621
2000年 灞河以东 15.899 7.257 6.849 3.412 0.914 0.752
灞河以西 21.221 7.455 4.179 2.423 0.811 0.644
2010年 灞河以东 17.849 5.221 4.511 5.412 1.393 0.699
灞河以西 21.014 5.143 4.275 5.145 0.655 0.541
2019年 灞河以东 18.124 4.548 6.486 4.672 0.583 0.675
灞河以西 21.375 4.597 5.851 5.105 0.226 0.592
Tab.2  Land use data of the Bahe River both banks(km2)
方法 平均值 标准差 平均
误差
均方根
误差
相关
系数
结合支持向量机的混合像元最优端元子集模型 0.980 64 0.004 1 0.002 1 0.004 6 0.832
MODIS LSE 0.986 41 0.003 2
Tab.3  Comparative analysis of surface emissivity
Fig.3  Land surface temperature of Bahe River in 1992,2000,2010 and 2019
Fig.4  Temperature variation from 1992 to 2019
Fig.5  Correlation between land use and surface temperature on both banks of Bahe River
Fig.6  Linear relationship between the proportion of cooling land area and surface temperature in different periods
Fig.7  Variation of land use and buffer zone temperature on both banks of the Bahe River in different years
Fig.8  Cooling effect of land use in buffer zones on both banks of the Bahe River in different periods
[1] 姚远, 陈曦, 钱静. 城市地表热环境研究进展[J]. 生态学报, 2018, 38(3):1134-1147.
[1] Yao Y, Chen X, Qian J. Research progress on the thermal environment of the urban surface[J]. Acta Ecologica Sinica, 2018, 38(3):1134-1147.
[2] 冯晓刚, 周在辉, 李凤霞, 等. 西咸一体化驱动的咸阳市热力景观格局时空分异分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3):413-420.
[2] Feng X G, Zhou Z H, Li F X, et al. Spatiotemporal differentiation of thermal landscape pattern in Xianyang City driven by the integration of Xi’an and Xianyang[J]. Journal Xi’an University of Architecture and Technology (Natural Science Edition), 2021, 53(3): 413-420.
[3] 岳文泽, 徐丽华. 城市典型水域景观的热环境效应[J]. 生态学报, 2013, 33(6):1852-1859.
[3] Yue W Z, Xu L H. Thermal environment effect of urban water landscape[J]. Acta Ecologica Sinica, 2013, 33(6): 1852-1859.
doi: 10.5846/stxb url: http://www.ecologica.cn/
[4] 冯悦怡, 胡潭高, 张力小. 城市公园景观空间结构对其热环境效应的影响[J]. 生态学报, 2014, 34(12):3179-3187.
[4] Feng Y Y, Hu T G, Zhang L X. Impacts of structure characteristics on the thermal environment effect of city parks[J]. Acta Ecologica Sinica, 2014, 34(12):3179-3187.
[5] Lin Y, Wang Z F, Yang C, et al. Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration[J]. Journal of Cleaner Production, 2020, 262:1-8.
[6] Tan X Y, Sun X, Huang C D, et al. Comparison of cooling effect between green space and water body[J]. Sustainable Cities and Society, 2021, 67:1-11.
[7] 梁保平, 马艺芳, 李晖. 桂林市典型园林绿地与水体的降温效应研究[J]. 生态环境学报, 2015, 24(2):278-285.
doi: 10.16258/j.cnki.1674-5906.2015.02.015
[7] Liang B P, Ma Y F, Li H. Research on colling effect of landscape green space and urban water in Guilin City[J]. Ecology and Environmental Sciences, 2015, 24(2):278-285.
[8] Du H Y, Song X J, Jiang H, et al. Research on the cooling island effects of water body: A case study of Shanghai,China[J]. Ecological Indicators, 2016, 67:31-38.
doi: 10.1016/j.ecolind.2016.02.040 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X16300619
[9] Wu J S, Li C M, Zhang X, et al. Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen[J]. Ecological Indicators, 2020, 17:1470.
[10] 曾素平, 时琢, 赵梅芳, 等. 城市水体对热岛的缓冲性能沿河岸距离的变化规律[J]. 生态学报, 2020, 40(15):5190-5202.
[10] Zeng S P, Shi Z, Zhao M F, et al. The variation of buffer performance of water bodies on urban heat island along riverbank distance[J]. Acta Ecologica Sinica, 2020, 40(15): 5190-5202.
[11] 张伟, 王凯丽, 梁胜, 等. 基于计算力流体力学的城市近郊湖泊“冷岛效应”及其情景模拟研究——以长沙市同升湖为例[J]. 生态环境学报, 2021, 30(10):2054-2066.
doi: 10.16258/j.cnki.1674-5906.2021.10.012
[11] Zhang W, Wang K L, Liang S, et al. Research on the “Cold Island Effect” and scenario simulation of lakes in urban suburbs based on computational force fluid dynamics: Taking Tongsheng Lake in Changsha City as an example[J]. Ecology and Environmental Sciences, 2021, 30(10):2054-2066.
[12] Zheng Y, Li Y, Hou H, et al. Quantifying the cooling effect and scale of large inner-city lakes based on landscape patterns: A case study of Hangzhou and Nanjing[J]. Remote Sensing, 2021, 13(8): 1526.
doi: 10.3390/rs13081526 url: https://www.mdpi.com/2072-4292/13/8/1526
[13] 张晓东, 赵银鑫, 马风华, 等. 基于遥感数据的银川市城市公园对城市热环境降温效应分析[J]. 水土保持通报, 2021, 41(5):338-347.
[13] Zhang X D, Zhao Y X, Ma F H, et al. Analysis on cooling effect of urban parks on urban thermal environment in Yinchuan City based on remote sensing[J]. Bulletin of Soil and Water Conservation, 2021, 41(5):338-347.
[14] 王耀斌, 赵永华, 韩磊, 等. 西安市景观格局与城市热岛效应的耦合关系[J]. 应用生态学报, 2017, 28(8):2621-2628.
[14] Wang Y B, Zhao Y H, Han L, et al. Coupling relationship of landscape pattern and urban heat island effect in Xi’an,China[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2621-2628.
[15] 胡李发, 谢元礼, 崔思颖, 等. 关中平原城市群夏季城市热岛特征及驱动力[J]. 中国环境科学, 2021, 41(8): 3842-3852.
[15] Hu L F, Xie Y L, Cui S Y, et al. The characteristics and driving forces of summer urban island in Guanzhong Plain urban agglomeration[J]. China Environmental Science, 2021, 41(8):3842-3852.
[16] 黄路, 邵浩, 张彩云, 等. 用辐射传输方程改进算法反演Landsat8海表温度的效果检验和适用条件分析[J]. 应用海洋学学报, 2021, 40(4):714-720.
[16] Huang L, Shao H, Zhang C Y, et al. Radiative transfer equation algorithm to retrieve Landsat8 sea surface temperature[J]. Journal of Applied Oceanography, 2021, 40(4):714-720.
[17] 段四波, 茹晨, 李召良, 等. Landsat卫星热红外数据地表温度遥感反演研究进展[J]. 遥感学报, 2021, 25(8):1591-1617.
[17] Duan S B, Ru C, Li Z L, et al. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data[J]. National Remote Sensing Bulletin, 2021, 25(8):1591-1617.
doi: 10.11834/jrs.20211296 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20211296/
[18] 覃志豪, Zhang M H, Arnon K, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001(4):456-466.
doi: 10.11821/xb200104009
[18] Qin Z H, Zhang M H, Arnon K, et al. Mono-window algorithm for retrieving land surface land temperature from Landsat TM6 data[J]. Acta Geo-Graphica Sinica, 2001(4):456-466.
[19] 覃志豪, 李文娟, 徐斌, 等. 利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法[J]. 海洋科学进展, 2004(22):129-137.
[19] Qin Z H, Li W J, Xu B, et al. Estimation method of land surface emissivity for retrieving land surface temperature from Landsat TM6 data[J]. Advances in Marine Science, 2004(22):129-137.
[20] 宋彩英, 覃志豪, 王斐. 基于线性光谱混合模型的地表温度像元分解方法[J]. 红外与毫米波学报, 2015, 34(4):497-504.
[20] Song C Y, Qin Z H, Wang F. An effective method for LST decomposition based on the linear spectral mixing model[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4):497-504.
[21] 徐涵秋. Landsat8热红外数据定标参数的变化及其对地表温度反演的影响[J]. 遥感学报, 2016, 20(2): 229-235.
[21] Xu H Q. Change of Landsat8 TIRS calibration parameters and its effect on land surface temperature retrieval[J]. Journal of Remote Sensing, 2016, 20(2): 229-235.
[22] 周佳, 赵亚鹏, 岳天祥, 等. 结合HASM和GWR方法的省级尺度近地表气温估算[J]. 地球信息科学学报, 2020, 22(10):2098-2107.
doi: 10.12082/dqxxkx.2020.190423
[22] Zhou J, Zhao Y P, Yue T X, et al. Near surface air temperature estimation by combining HASM with GWR model on a provincial scale[J]. Journal of Geo-Information Science, 2020, 22(10):2098-2107.
[23] 韩晟, 韩坚舟, 赵璇, 等. 距离权重改进的Pearson相关系数及应用[J]. 石油地球物理勘探, 2019, 54(6):1363-1370.
[23] Han S, Han J Z, Zhao X, et al. A Pearson correlation coefficient improved by spatial weight[J]. Oil Geophysical Prospecting, 2019, 54(6): 1363-1370.
[24] 凌德泉, 毕硕本, 左颖, 等. 缓冲区分析综合模型构建研究[J]. 测绘科学, 2019, 44(9):47-53.
[24] Ling D Q, Bi S B, Zuo Y, et al. Study on the comprehensive model construction of buffer analysis[J]. Science of Surveying and Mapping, 2019, 44(9):47-53.
[25] 王丽霞, 孙津花, 刘招, 等. 基于Landsat8数据反演地表发射率的几种不同算法对比分析[J]. 西安科技大学学报, 2019, 39(2):327-333.
[25] Wang L X, Sun J H, Liu C, et al. Comparison of several different algorithms to retrieve land surface emissivity using Landsat8 data[J]. Journal of Xi’an University of Science and Technology, 2019, 39(2):327-333.
[1] WANG Renjun, LI Dongying, LIU Baokang. A water body identification model for lakes in Hoh Xil based on GF-6 WFV satellite data[J]. Remote Sensing for Natural Resources, 2022, 34(2): 80-87.
[2] GU Yanchun, MENG Qingyan, HU Die, ZHOU Xiaocheng. Analysis of environmental effects of industrial thermal anomalies[J]. Remote Sensing for Land & Resources, 2020, 32(4): 190-198.
[3] DONG Jiaji, REN Huazhong, ZHENG Yitong, NIE Jing, MENG Jinjie, QIN Qiming. A study of the livability of urban environment based on multi-source remote sensing data: A case study of Beijing City[J]. Remote Sensing for Land & Resources, 2020, 32(3): 165-172.
[4] Jingjian LIU, Hongzhong LI, Cui HUA, Yuman SUN, Jinsong CHEN, Yu HAN. Extraction of early paddy rice area in Lingao County based on Sentinel-1A data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 191-199.
[5] CHI Tenglong, ZENG Jian, LIU Chen. A study of evolution mechanism and diffusion mode pattern of thermal environment for Wuhan City in the past 30 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 197-204.
[6] LIU Yao, ZHANG Wenjuan, ZHANG Bing, GAN Fuping. Radiance image simulation at the bottom of atmosphere in mid-infrared absorption bands[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 98-103.
[7] WANG Jinjie, DING Jianli, ZHANG Cheng, CHEN Wenqian. Method of water information extraction by improved SWI based on GF-1 satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 29-35.
[8] WU Ying, WANG Zhenhui, WENG Fuzhong. Relationship between inter-annual variations of microwave land surface emissivity and climate factors over the desert[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 55-60.
[9] WU Ying, WANG Zhenhui. Advances in the study of microwave land surface emissivity model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 1-7.
[10] WU Ying, WANG Zhen-hui. Advances in the Study of Land Surface Emissivity Retrieval from Passive Microwave Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 1-7.
[11] CHEN Jian, YANG Xu-yuan. A Study of Remote Sensing Monitoring of Urban Thermal Environment Based on ASTER Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 100-105.
[12] LIAO Cheng-Hao, LIU Xue-Hua. AN EFFECTIVENESS COMPARISON BETWEEN WATER BODY INDICES BASED ON MODIS DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(4): 22-26.
[13] PAN Wei-Hua, Zhang-Chun-Gui.
A  STUDY ON URBAN HEAT ISLAND EFFECT IN QUANZHOU
CITY DURING ITS URBANIZATION PERIOD
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 50-54.
[14] QIN Zhi-hao, LI Wen-juan, XU Bin, CHEN Zhong-xin, LIU Jia. THE ESTIMATION OF LAND SURFACE EMISSIVITY FOR LANDSAT TM6[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(3): 28-32,36,41.
[15] LIU San-chao, ZHANG Wan-chang. A REMOTE SENSING STUDY OF THE URBAN THERMAL EFFECT ON ZHANGYE AND ITS SURROUNDING OASIS AREA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(4): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech