Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 165-172     DOI: 10.6046/gtzyyg.2020.03.22
|
A study of the livability of urban environment based on multi-source remote sensing data: A case study of Beijing City
DONG Jiaji1(), REN Huazhong1,2(), ZHENG Yitong1, NIE Jing1, MENG Jinjie1, QIN Qiming1,2
1. Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences,Peking University, Beijing 100871, China
2. Beijing Key Laboratory of Spatial Information Integration and Its Application, Peking University, Beijing 100871, China
Download: PDF(5275 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the remote sensing data, this paper aims to construct an urban environment livability evaluation system on the basis of remote sensing factors and further evaluate the livability of the urban environment. An object-oriented classification method was used to classify urban ecological land into five categories from GF-1 satellite data: water body, vegetation area, road, building land, and bare soil. In addition, the urban surface temperature was retrieved from Landsat8 thermal infrared data and then, the urban thermal environment was calculated. Finally, on the basis of constructing the urban ecological land and urban thermal environment factors, a weight method was used to calculate the ecological quality index (EQI) of the city in order to establish an overall evaluation system of urban environmental livability. Applications in Beijing City showed that, from 2013 to 2014, the urban heat island effect in Beijing was not obvious, and most areas were suitable or basically suitable for human habitation.

Keywords multi-source remote sening      urban ecological land      urban thermal environment      livability evaluation     
:  TP79  
Corresponding Authors: REN Huazhong     E-mail: dongjiaji@pku.edu.cn;renhuazhong@pku.edu.cn
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiaji DONG
Huazhong REN
Yitong ZHENG
Jing NIE
Jinjie MENG
Qiming QIN
Cite this article:   
Jiaji DONG,Huazhong REN,Yitong ZHENG, et al. A study of the livability of urban environment based on multi-source remote sensing data: A case study of Beijing City[J]. Remote Sensing for Land & Resources, 2020, 32(3): 165-172.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.22     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/165
Fig.1  Flowchart for the evaluation of the livability of urban environment
地类 指数 公式 说明
水体 归一化差值水体指数(normalized difference water index, NDWI) NDWI=ρgreen-ρNIRρgreen+ρNIR 式中ρgreenρNIR分别为绿光和近红外波段的反射率。当NDWI0.12时,为水体[28]
植被 归一化差值植被指数(normalized difference vegetation index, NDVI) NDVI=ρNIR-ρredρNIR+ρred 式中ρred为红光波段的反射率。当NDVI>0.12时,为植被[29]
道路 长宽比指数(R) R=LW 式中: L为图斑对象长度; W为图斑对象宽度。设置阈值R≥3,L≥170像元为道路[30]
建筑用地 灰度最大差值与亮度的比值(Diffmax); 形状指数(K); 灰度共生矩阵熵(Ent) Diffmax=i,jKB|ci(v)-cj(v)|c(v)
K=AP
Ent=i=1nj=1np(i,j)×ln[p(i,j)]
式中: ci(v)为对象vi层的平均亮度值; cj(v)为对象vj层的平均值; KB为所有的对象; c(v)为所有层对象v的平均值[31]; AP分别为影像对象的面积和周长; p(i,j)为像元值ij出现的概率[32]
裸土 紧凑度(C) C=n×mb 式中: C为紧凑度; n为影像对象的宽; m为对象的长度; b为对象内的像素数[31]
Tab.1  Classification rules corresponding to each feature type
地类 单因子
评分
说明
植被区 100 植被区作为理论上的最佳居住区
建筑用地 90 已经作为居住区,默认为较适合于居住或办公
裸土 80 裸土种类较多,在城市的裸土可能是潜在的建筑用地和绿地
水体 不直接参与评分,水源作为其他像元生态环境的参考
道路 不直接参与评分,道路作为其他像元交通通达性的参考
Tab.2  Score levels of urban ecological land covers on the livability of urban environment
NDVI 单因子评分 说明
[0.5,1] 100 浓密植被
[0.4,0.5) 90 较浓密植被
[0.3,0.4) 80 部分植被覆盖
[0.15,0.3) 70 稀疏植被
[-0.2,0.15) 60 裸土,但不包括水体
Tab.3  Score levels of urban NDVI on the livability of urban environment
与水体的距离/m 单因子
评分
说明
<200 100 在水体(例如公园、湿地等)周围
[200,500) 90 直接受水体环境影响大
[500,1 000) 80 水体辐射范围可能受其他建筑的影响
[1 000,1 500) 70 水体辐射范围受其他建筑的影响,常常需要乘坐交通工具才能到达
≥1 500 60 距离水体较远,需要乘坐交通工具才能达到
Tab.4  Score levels of urban water body distance on the livability of urban environment
与主干道
的距离/m
单因子
评分
说明
<20 100 方便自驾或乘公交
[20,50) 90 比较方便自驾或乘公交
[50,200) 80 要绕过1~2栋建筑物才能到主干道
[200,500) 70 需要步行才能到主干道
≥500 60 比较偏离主干道
Tab.5  Score levels of urban road distance on the livability of urban environment
热岛效应强度累
积直方图比例
单因子
评分
说明
[95%,100%] 60 高温,酷热,必须借助降温设施
[80%,95%) 70 温度较高,需要借助降温设施
[60%,80%) 80 温度高,但不影响正常生活
[40%,60%) 90 温度合适
[0,40%) 100 温度低,夏季凉爽
Tab.6  Score levels of summer urban thermal environment on the livability of urban environment
热岛效应强度累
积直方图比例
单因子
评分
说明
[95%,100%] 60 工业高温区,影响正常生活
[85%,95%) 70 温度较高
[75%,85%) 80 温度高
[60%,75%) 90 温度一般
[45%,60%) 100 温度适中
[35%,45%) 90 温度低
[25%,35%) 80 温度较低,需要保暖措施
[15%,25%) 70 温度低,必须要保暖措施
[0,15%) 60 温度非常低,冰雪覆盖等,需要加强防寒保暖等措施
Tab.7  Score levels of winter urban thermal environment on the livability of urban environment
累积直方图比例 权重 说明
Iland_cover 0.4 具有决定性作用
Iwater_dist 0.1 一般影响
Iroad_dist 0.1 一般影响
INDVI 0.2 重要影响
IUHI 0.2 重要影响
Tab.8  The weights of factors on the livability of urban environment
EQI 等级 说明
[90,100] 宜居 居住环境很好
[80,90) 较宜居 居住环境好
[70,80) 一般宜居 居住环境一般
[60,70) 较不宜居 居住环境差
[0,60) 不宜居 居住环境很差
Tab.9  EQI and the livability levels of urban environment
Fig.2  Urban ecological land covers images in Beijing on three dates
Fig.3  Urban ecological land covers histograms in Beijing
Fig.4  Map of land surface temperature and UHI in Beijing and the histograms
Fig.5  Livability of urban environment in Beijing on three dates
[1] 田山川. 国外宜居城市研究的理论与方法[J].经济地理, 2008(4):535-538.
[1] Tian S C. Theories and methods of livable cities abroad[J].Economic Geography 2008(4):535-538.
[2] 王思瑶, 刘艳红, 张丽宏. 宜居社区环境评价体系的研究进展[J]. 山西建筑, 2017,43(22):183-185.
[2] Wang S Y, Liu Y H, Zhang L H. Research progress on environmental assessment system of livable community[J]. Shanxi Building, 2017,43(22):183-185.
[3] Ruut V. The four qualities of life ordering concepts and measures of the good life[M]. Dordrecht:Springer Netherlands, 2013: 195-226.
[4] Omuta G E D. The quality of urban life and the perception of livability:A case study of neighbourhoods in Benin City,Nigeria[J]. Social Indicators Research, 1988,20(4):417-440.
doi: 10.1007/BF00302336 url: http://link.springer.com/10.1007/BF00302336
[5] Geller A L. Smart growth:A prescription for livable cities[J]. American Journal of Public Health, 2003,93(9):1410-1415.
doi: 10.2105/ajph.93.9.1410 pmid: 12948954 url: https://www.ncbi.nlm.nih.gov/pubmed/12948954
[6] Mayer H, Knox P L. Slow cities:Sustainable places in a fast world[J]. Journal of Urban Affairs, 2006,28(4):321-334.
doi: 10.1111/j.1467-9906.2006.00298.x url: https://www.tandfonline.com/doi/full/10.1111/j.1467-9906.2006.00298.x
[7] Okulicz-Kozaryn A. City life:Rankings (livability) versus perceptions (satisfaction)[J]. Social Indicators Research, 2013,110(2):433-451.
doi: 10.1007/s11205-011-9939-x url: http://link.springer.com/10.1007/s11205-011-9939-x
[8] Zanella A, Camanho A S, Dias T G. The assessment of cities’ livability integrating human wellbeing and environmental impact[J]. Annals of Operations Research, 2015,226(1):695-726.
doi: 10.1007/s10479-014-1666-7 url: http://link.springer.com/10.1007/s10479-014-1666-7
[9] Leach J M, Lee S E, Boyko C T, et al. Dataset of the livability performance of the city of Birmingham,UK,as measured by its citizen wellbeing,resource security,resource efficiency and carbon emissions[J]. Data in Brief, 2017,15:691-695.
pmid: 29124092 url: https://www.ncbi.nlm.nih.gov/pubmed/29124092
[10] Suresh K. What works to make cities good for living?[J]. Journal of Health Management, 2016,18(3):367-380.
doi: 10.1177/0972063416651564 url: http://journals.sagepub.com/doi/10.1177/0972063416651564
[11] Ghasemi K, Hamzenejad M, Meshkini A. The spatial analysis of the livability of 22 districts of Tehran Metropolis using multi-criteria decision making approaches[J]. Sustainable Cities and Society, 2018,38:382-404.
doi: 10.1016/j.scs.2018.01.018 url: https://linkinghub.elsevier.com/retrieve/pii/S2210670717314099
[12] Mouratidis K. Is compact city livable? The impact of compact versus sprawled neighbourhoods on neighbourhood satisfaction[J]. Urban Studies, 2018,55(11):2408-2430.
doi: 10.1177/0042098017729109 url: http://journals.sagepub.com/doi/10.1177/0042098017729109
[13] 张文忠. 中国宜居城市建设的理论研究及实践思考[J]. 国际城市规划, 2016,31(5):1-6.
[13] Zhang W Z. Theoretical research and practical thinking on the construction of livable cities in China[J]. International Urban Planning, 2016,31(5):1-6.
doi: 10.22217/upi url: http://www.upi-planning.org/
[14] 崔凤琪, 唐海萍, 张欣. 京津冀地区城市宜居性评价及影响因素分析:基于2010—2016年面板数据的实证研究[J]. 北京师范大学学报(自然科学版), 2018,54(5):110-117.
[14] Cui F Q, Tang H P, Zhang X. Evaluation of urban livability in Beijing-Tianjin-Hebei region and analysis of influencing factors:An empirical study based on panel data from 2010 to 2016[J]. Journal of Beijing Normal University(Natural Science), 2018,54(5):110-117.
[15] 王迎春, 梁旭东, 苗世光, 等. 城市气象研究动向的思考[J]. 气象, 2012,38(10):1232-1237.
[15] Wang Y C, Liang X D, Miao S G, et al. Reflections on the trend of urban meteorological research[J]. Meteorological, 2012,38(10):1232-1237.
[16] Kovats R S, Hajat S. Heat stress and public health:A critical review[J]. Annual Review of Public Health, 2008,29(1):41-55.
doi: 10.1146/annurev.publhealth.29.020907.090843 url: http://www.annualreviews.org/doi/10.1146/annurev.publhealth.29.020907.090843
[17] White M A, Nemani R R, Thornton P E, et al. Satellite evidence of phenological differences between urbanized and rural areas of the eastern united states deciduous broadleaf forest[J]. Ecosystems, 2002,5(3):260-273.
doi: 10.1007/s10021-001-0070-8 url: http://www.springerlink.com/content/54ej4av22e6hhdjj/
[18] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008,319(5864):756-760.
pmid: 18258902 url: https://www.ncbi.nlm.nih.gov/pubmed/18258902
[19] Akbari H, Pomerantz M, Taha H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas[J]. Solar Energy, 2001,70(3):295-310.
doi: 10.1016/S0038-092X(00)00089-X url: https://linkinghub.elsevier.com/retrieve/pii/S0038092X0000089X
[20] 张继平, 乔青, 刘春兰, 等. 基于最小累积阻力模型的北京市生态用地规划研究[J]. 生态学报, 2017,37(19):6313-6321.
doi: 10.5846/stxb201606121121 url: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201606121121&flag=1
[20] Zhang J P, Qiao Q, Liu C L, et al. Study on ecological land planning in Beijing based on the minimum cumulative resistance model[J]. Acta Ecologica Sinica, 2017,37(19):6313-6321.
[21] Fu B, Yu D L, Zhang Y J. The livable urban landscape:GIS and remote sensing extracted land use assessment for urban livability in Changchun Proper,China[J]. Land Use Policy, 2019,87:104048.
doi: 10.1016/j.landusepol.2019.104048 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837719302595
[22] Shahtahmassebi A R, Wu C, Blackburn G A, et al. How do modern transportation projects impact on development of impervious surfaces via new urban area and urban intensification? Evidence from Hangzhou Bay bridge,China[J]. Land Use Policy, 2018,77(77):479-497.
doi: 10.1016/j.landusepol.2018.05.059 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837716305701
[23] 魏伟, 石培基, 冯海春, 等. 干旱内陆河流域人居环境适宜性评价——以石羊河流域为例[J]. 自然资源学报, 2012,27(11):1940-1950.
doi: 10.11849/zrzyxb.2012.11.013 url: http://www.jnr.ac.cn/CN/abstract/abstract2521.shtml
[23] Wei W, Shi P J, Feng H C, et al. Evaluation on the suitability of human settlements in arid inland river basin:A case study of Shiyang River basin[J]. Journal of Natural Resources, 2012,27(11):1940-1950.
doi: 10.11849/zrzyxb.2012.11.013 url: http://www.jnr.ac.cn/CN/abstract/abstract2521.shtml
[24] 中国人民共和国国家环境保护标准. HJ 192—2015生态环境状况评价技术规范[S].北京: 中国环境科学出版社, 2015.
[24] National Environmental Protection Standards of the People’s Republic of China. HJ 192-2015 Technical Specification of the Evaluation of the Ecological Environment[S]. Beijing: China Environmental Science Press, 2015.
[25] 刘建华, 毛政元. 高空间分辨率遥感影像分割方法研究综述[J].遥感信息, 2009(6):95-101.
url: http://d.wanfangdata.com.cn/Periodical_ygxx200906020.aspx
[25] Liu J H, Mao Z Y. Review of the method of segmentation of remote sensing images with high spatial resolution[J].Remote Sensing Information 2009(6):95-101.
url: http://d.wanfangdata.com.cn/Periodical_ygxx200906020.aspx
[26] 汪求来. 面向对象遥感影像分类方法及其应用研究[D]. 南京:南京林业大学, 2008.
[26] Wang Q L. Object-oriented remote sensing image classification method and application[D]. Nanjing:Nanjing Forestry University, 2008.
[27] 张佳, 谢玉凤. 高光谱遥感影像分类方法综述[J].安徽农学通报, 2017,25(14):155,165.
[27] Zhang J, Xie Y F. Overview of classification methods of hyperspectral remote sensing images[J].Anhui Agricultural Science Bulletin, 2017,25(14):155,165.
[28] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
doi: 10.1080/01431169608948714 url: https://www.tandfonline.com/doi/full/10.1080/01431169608948714
[29] Rouse Jr J W, Haas R, Schell J, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974,1:309-317.
[30] 雷小奇, 王卫星, 赖均. 一种基于形状特征进行高分辨率遥感影像道路提取方法[J]. 测绘学报, 2009,38(5):457-465.
[30] Lei X Q, Wang W X, Lai J. A road extraction method based on shape features for high-resolution remote sensing images[J]. Journal of Surveying and Mapping, 2009,38(5):457-465.
[31] 何江. 超高分辨率遥感影像城市建筑物和道路分类研究[D]. 兰州:兰州大学, 2019.
[31] He J. Study on classification of urban buildings and roads in ultra-high resolution remote sensing images[D]. Lanzhou:Lanzhou University, 2019.
[32] 谢嘉丽, 李永树, 李何超, 等. 利用灰度共生矩阵纹理特征识别空心村损毁建筑物的方法[J].测绘通报, 2017(12):90-93,102.
[32] Xie J L, Li Y S, Li H C, et al. Method of identifying damaged buildings in hollow villages by using the texture features of gray scale symbiotic matrix[J].Surveying and Mapping Advisory 2017(12):90-93,102.
[33] 薛晓娟, 孟庆岩, 王春梅, 等. 北京市热岛效应时空变化的HJ-1B监测分析[J]. 地球信息科学学报, 2012,14(4):474-480.
doi: 10.3724/SP.J.1047.2012.00474 url: http://www.dqxxkx.cn/CN/abstract/abstract10031.shtml
[33] Xue X J, Meng Q Y, Wang C M, et al. HJ-1B monitoring and analysis of temporal and spatial variation of heat island effect in Beijing[J]. Journal of Earth Information Science, 2012,14(4):474-480.
[34] Du C, Ren H Z, Qin Q M, et al. A practical split-window algorithm for estimating land surface temperature from Landsat8 data[J]. Remote Sensing, 2015,7(1):647-665.
doi: 10.3390/rs70100647 url: http://www.mdpi.com/2072-4292/7/1/647
[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[14] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech