Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (4) : 1-7     DOI: 10.6046/gtzyyg.2013.04.01
Review |
Advances in the study of microwave land surface emissivity model
WU Ying1,2, WANG Zhenhui1,2
1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(573 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The land surface emissivity is a key parameter in the land data assimilation system, and the uses of the satellite microwave data under most land conditions are significantly increasing by implementing the microwave land emissivity model(MLEM)in the satellite data assimilation system. This paper systematically reviews the progress of MLEM in the aspects of physical model and semi-empirical model. The main advantages and limitations of the two types of models are also discussed. Finally, the development tendencies of simulating microwave land emissivity (MLE) by models are proposed, such as improving the accuracy of the inputs, taking assumptions of models into account, and strengthening the study of the microwave radiative transfer process. Some proposals are also put forward concerning the improvement of the method for further research on the semi-empirical model in the application of satellite data and the attention to the contrast between the models and the quantitative evaluation methods of models.
Keywords LiDAR      angular texture signal(ATS)      road intersection      Snake     
:  TP79  
  TP722.6  
Issue Date: 21 October 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Zhuo
MA Hongchao
LI Yunfan
Cite this article:   
CHEN Zhuo,MA Hongchao,LI Yunfan. Advances in the study of microwave land surface emissivity model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 1-7.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.04.01     OR     https://www.gtzyyg.com/EN/Y2013/V25/I4/1
[1] Weng F,Liu Q.Satellite data assimilation in numerical weather prediction models,part I:Forward radiative transfer and Jacobian modeling in cloudy atmospheres[J].Journal of Atmospheric Science,2003,60(21):2633-2646.
[2] Errico R M,Ohring G,Bauer P,et al.Assimilation of satellite cloud and precipitation observations in numerical weather prediction models[J].Journal of Atmospheric Science,2007,64(11):3737-3741.
[3] 吴莹,王振会.被动微波遥感反演地表发射率研究进展[J].国土资源遥感,2012,24(4):1-7. Wu Y,Wang Z H.Advances in the study of land surface emissivity retrieval from passive microwave remote sensing[J].Remote Sensing for Land and Resources,2012,24(4):1-7.
[4] Weng F,Zhu T,Yan B.Satellite data assimilation in numerical weather prediction models,part II:Uses of rain affected microwave radiances for hurricane vortex analysis[J].Journal of Atmospheric Science,2007,64(11):3910-3925.
[5] Weng F,Yan B,Grody N C.A microwave land emissivity model[J].Journal of Geophysical Research,2001,106(17):20115-20123.
[6] Wang J R,ONeill P E,Jackson T J,et al.Multi-frequency measurements of the effects of soil moisture,soil texture,and surface roughness[J].IEEE Transactions on Geoscience and Remote Sensing,1983,21(1):44-51.
[7] Fung A K,Li Z,Chen K S.Back scattering from a randomly rough dielectric surface[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):195-200.
[8] Shi J,Chen K S,Li Q,et al.A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2674-2686.
[9] Chen K S,Wu T D,Tsang L,et al.Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):90-101.
[10] 施建成,蒋玲梅,张立新.多频率多极化地表辐射参数化模型[J].遥感学报,2006,10(4):502-514. Shi J C,Jiang L M,Zhang L X.A parameterized multi-frequency-polarization surface emission model[J].Journal of Remote Sensing,2006,10(4):502-514.
[11] Macelloni G,Nesti G,Pampaloni P,et al.Experimental validation of surface scattering and emission models[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(1):459-469.
[12] Li Q,Tsang L,Shi J,et al.Application of physics-based two-grid method and sparse matrix canonical grid method for numerical simulations of emissivities of soils with rough surfaces at microwave frequencies[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1635-1643.
[13] Mo T,Choudhury B J,Schmugge T J,et al.A model for microwave emission from vegetation[J].Journal of Geophysical Research,1982,87(13):11229-11237.
[14] Karam M A,Fung A K,Lang,R H,et al.A microwave scattering model for layered vegetation[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(4):767-784.
[15] Jackson T J,Schmugge T J.Vegetation effects on the microwave emission of soils[J].Remote Sensing of Environment,1991,36(3):203-212.
[16] Wigneron J P,Calvet J C,Kerr Y H,et al.Microwave emission of vegetation:Sensitivity to leaf characteristics[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(3):716-726.
[17] Wigneron J P,Kerr Y H,Chanzy A,et al.Inversion of surface parameters from passive microwave measurements over a soybean field[J].Remote Sensing of Environment.1993,46(1):61-72.
[18] Kurum M,Lang R H,O'Neill P E,et al.A first-order radiative transfer model for microwave radiometry of forest canopies at L-band[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3167-3179.
[19] Ferrazzoli P,Guerriero L.Passive microwave remote sensing of forests:A model investigation[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):433-443.
[20] Ferrazzoli P,Guerriero L,Wigneron J P.Simulating L-band emission of forests in view of future satellite applications[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2700-2708.
[21] Martínez-Vázquez A,Camps A,Duffo N,et al.Full polarimetric emissivity of vegetation-covered soils:Vegetation structure effects[C]// Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2002:3542-3544.doi:10.1109/IGARSS.2002.1027242.
[22] Vecchia A D,Saleh K,Ferrazzoli P,et al.Simulating L-band emission of coniferous forests using a discrete model and a detailed geometrical representation[J].IEEE Transactions on Geoscience and Remote Sensing,2006,3(3):364-368.
[23] Tsang L,Kong J A,Shin R T.Theory of microwave remote sensing [M].New York:John Wiley,1985:498.
[24] Fung A K.Microwave scattering and emission models and their applications[M].Norwood,MA:Artech House Inc,1994:419-423.
[25] Tsang L,Kong J A,Ding K H,et al.Scattering of electromagnetic waves Vol.2[M].New York:Wiley Interscience,2001.
[26] Tjuatja S,Fung A K,Dawson M S.An analysis of scattering and emission from sea ice[J].Remote Sensing Review,1993,7(1):83-106.
[27] Boyarskii D A,Etkin V S.Two flow model of wet snow microwave emissivity[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,Pasadena,CA,1994:2068-2070. doi:10.1109/IGARSS.1994.399655.
[28] Jiang L,Shi J,Tjuatja S,et al.A parameterized multiple-scattering model for microwave emission from dry snow[J].Remote Sensing of Environment,2007,111(2/3):357-366.
[29] Jiang L,Tjuatja S,Shi J,et al.Modeling of emission from snow-covered ground for passive microwave remote sensing[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2009:310-313.doi:10.1109/IGARSS.2009.5418072.
[30] Du J,Shi J,Wu S.A comparison of a second-order snow model with field observations[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2005:2649-2651.doi:10.1109/IGARSS.2005.1525610.
[31] Du J,Shi J,Tjuatja S,et al.A multi-scattering and multi-layer snow model and its validation[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2007:1219-1222.doi:10.1109/IGARSS.2007.4423025.
[32] Du J,Shi J.Development of a parameterized snow scattering model[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2008:43-46.doi:10.1109/IGARSS.2008.4779278.
[33] Du J Y,Shi J C,Rott H.Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model[J].Remote Sensing of Environment,2010,114(5):1089-1098.
[34] Choudhury B J,Schmugge T J,Chang A,et al.Effect of surface roughness on the microwave emission from soil[J].Journal of Geophysical Research,1979,84(9):5699-5706.
[35] Prigent C,Jaumouillü E,Chevallier F,et al.A parameterization of the microwave land surface emissivity between 19 and 100 GHz,anchored to satellite-derived estimates[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(2):344-352.
[36] Pan H,Shi J,Yang H,et al.Passive microwave radiance estimation by coupling a land surface emissivity model with CRTM[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2012:2423-2425.doi:10.1109/IGARSS.2012.6351002.
[37] Zhang S,Shi J,Dou Y,et al.Experiments of satellite data simulation based on the community land model and SCE-UA algorithm[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2011:28-31.doi:10.1109/IGARSS.2011.6048889.
[38] Zhang S,Shi J,Jiang L,et al.A dual-phase satellite data simulation system:Framework and preliminary evaluation over China[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2012:1014 -1017.doi:10.1109/IGARSS.2012.6351230.
[39] Wigneron J P,Kerr Y,Waldteufel P,et al.L-band microwave emission of the biosphere(L-MEB) model:Description and calibration against experimental data sets over crop fields[J].Remote Sensing of Environment,2007,107(4):639-655.
[40] Pulliainen J,Krna J P,Hallikainen M.Development of geophysical retrieval algorithms for the MIMR[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(1):268-277.
[41] Pulliainen J,Hallikainen M.Retrieval of regional snow water equivalent from space-borne passive microwave observations[J].Remote Sensing of Environment,2001,75(1):76-85.
[42] Kerr Y H,Njoku E G.A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):384-393.
[43] Hewison T J.Airborne measurements of forest and agricultural land surface emissivity at millimeter wavelengths[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):393-400.
[44] Wegmôller U,Matzler C.Rough bare soil reflectivity model[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1391-1395.
[45] Wigneron J P,Laguerre L,Kerr Y H.A simple parameterization of the L-band microwave emission from rough agricultural soils[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1697-1707.
[46] Mo T,Schmugge T J.A parameterization of the effect of surface roughness on microwave emission[J].IEEE Transactions on Geoscience and Remote Sensing,1987,25(4):47-54.
[47] Pulliainen J,Grandell J,Hallikainen M T.HUT snow emission model and its applicability to snow water equivalent retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1378-1390.
[48] Wiesmann A,Mtzler C.Microwave emission model of layered snowpacks[J].Remote Sensing of Environment,1999,70(3):307-316.
[49] Roy V,Goïta K,Royer A,et al.Snow water equivalent retrieval in a Canadian Boreal environment from microwave measurements using the HUT snow emission model[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(9):1850-1859.
[50] Pulliainen J.Mapping of snow water equivalent and snow depth in Boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations[J].Remote Sensing of Environment,2006,101(2):257-269.
[51] Pardü M,Goïta K,Royer A.Inversion of a passive microwave snow emission model for water equivalent estimation using airborne and satellite data[J].Remote Sensing of Environment,2007,111(2/3):346-356.
[52] 赵天杰,张立新,蒋玲梅,等.复杂地表条件下冻融土的微波辐射特性模拟及判别分析[J].冰川冻土,2009,31(2):220-226. Zhao T Z,Zhang L X,Jiang L M,et al.Microwave radiation of frozen and thawed soils under complicated surface condition:Simulation and discrimination analysis[J].Journal of Glaciology and Geocryology,2009,31(2):220-226.
[53] Lemmetyinen J,Pulliainen J,Rees A,et al.Multiple-layer adaptation of HUT snow emission model:Comparison with experimental data[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(7):2781-2794.
[54] Gunn G,Duguay C,Derksen C,et al.Evaluation of the HUT modified snow emission model over lake ice using airborne passive microwave measurements[J].Remote Sensing of Environment,2011,115(1):233-244.
[55] Mätzler C.Improved born approximation for scatteing of radiation in a granular medium[J].Journal of Applied Physics,1998,83(11):6111-6117.
[56] Mätzler C,Wiesmann A.Extension of the microwave emission model of layered snowpacks to coarse-grained snow[J].Remote Sensing of Environment,1999,70(3):317-325.
[57] Graf T,Koike T,Li X,et al.Assimilating passive microwave brightness temperature data into a land surface model to improve the snow depth predictability[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium,2006:706-709.doi:10.1109/IGARSS.2006.185
[58] Harlow R C,Essery R.Tundra snow emissivities at MHS frequencies:MEMLS validation using airborne microwave data Measured during CLPX-II[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4262-4278.
[59] Kang D H,Barros A P.Observing system simulation of snow microwave emissions over data sparse regions,part I:Single layer physics[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1785-1805.
[60] 吴莹,Weng F Z,王振会,等.沙漠地区微波地表发射率和土壤质地关系分析[J].高原气象,2013,32(2):481-490. Wu Y,Weng F Z,Wang Z H,et al.Analysis of the relationship between microwave land surface emissivity and soil texture over deserts[J].Plateau Meteorology,2013,32(2):481-490.
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[3] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[4] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[5] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[6] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[7] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[8] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[9] Sirui YANG, Zhaohui XUE, Ling ZHANG, Hongjun SU, Shaoguang ZHOU. Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River[J]. Remote Sensing for Land & Resources, 2018, 30(4): 33-40.
[10] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[11] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[12] LI Yunfan, TAN Debao, LIU Rui, WU Jianwei. An improved RANSAC algorithm for building point clouds segmentation in consideration of roof structure[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 20-25.
[13] YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
[14] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[15] WANG Chunlin, SUN Jinyan, ZHOU Shaoguang, QIAN Haiming, HUANG Zuoji. Building boundary extraction using LiDAR data and images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 78-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech