Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 61-70     DOI: 10.6046/zrzyyg.2022250
|
Application of GF-5 hyperspectral data in uranium deposit exploration
ZHANG Yuantao1,2(), PAN Wei1, YU Changfa1
1. National Key Laboratory of Remote Sensing Information and Image Analysis Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
2. No.280 Institute of Nuclear Industry, Deyang 618300, China
Download: PDF(8290 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

However, since GF-5 launch in 2018, few studies regarding the application of GF-5 AHSI data for uranium deposit exploration have been reported. In this study, with the Weijing area of Inner Mongolia as the study area, the spectral hourglass technology was applied to extract alteration anomalies of goethite and low-, medium-, and high-aluminum sericite from corresponding GF-5 AHSI data. Then, the principal component analysis (PCA) and the LINE module in PCI Geomatica software were employed for the automatic extraction of linear structures in the study area, with a linear structure density map created. Finally, a uranium mineralization potential map of the study area was generated by integrating all proof layers based on the ArcGIS software. The results indicate that the extraction of alteration information and linear structures, and the integration of multiple proof layers are feasible, and the obtained uranium mineralization potential map exhibits high reliability. One uranium deposit prediction zone was identified based on the study results and geological data. The study results will guide the subsequent uranium deposit exploration in the study area while providing a reference for the geological application of GF-5 AHSI data.

Keywords GF-5      hyperspectrum      alteration information      linear structure      weighted overlay      uranium deposit     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuantao ZHANG
Wei PAN
Changfa YU
Cite this article:   
Yuantao ZHANG,Wei PAN,Changfa YU. Application of GF-5 hyperspectral data in uranium deposit exploration[J]. Remote Sensing for Natural Resources, 2023, 35(4): 61-70.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022250     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/61
Fig.1  Sketch map of geology in research area (modified after the 2015 data from No.208 Geologic Party, CNNC)
波段 光谱范围/nm 光谱分
辨率/nm
空间分
辨率/m
波段数
可见光—近红外(VNIR) 390.324~1 029.18 5 30 150
短波红外(SWIR) 1 004.77~2 513.25 10 180
Tab.1  Main parameters of GF-5 AHSI image
Fig.2  Band 276 original image and fringe-restored image
Fig.3  Flow chart of research
Fig.4  Endmember spectrum from AHSI image and standard spectrum from USGS spectral library
参数 含义 单位 描述 采用值
RADI 滤波半径 像素 指定Canny边缘检测算子中用于梯度计算的高斯滤波器的半径大小 12
GTHR 边缘梯度阈值 边缘检测过程中,作为边缘的梯度最小值,该值越大,图像中边缘越少 50
LTHR 曲线长度阈值 像素 被视为线性构造的最小长度 25
FTHR 线拟合阈值 像素 线段拟合形成线性构造时允许的最大误差 3
ATHR 角度差阈值 像素 定义要连接的2条多段线之间不能超过的角度。当2线段之间夹角大于该值时,则不进行连接操作 20
DTHR 连接距离阈值 像素 指定2条线段之间进行连接处理的最大间距,当超过该值时,则不进行连接 1
Tab.2  Different parameters of the LINE module and their actual values
Fig.5  Distribution of alteration minerals
Fig.6  Distribution of linear structures
Fig.7  Rrose diagram of linear structures
图层 权重 数值 类别得分
线性构造密度 0.2 [0.000,0.723) 1
[0.723,0.815) 2
[0.815,0.906) 3
[0.906,1.000] 4
中铝绢云母蚀变 0.2 [0.000,0.395) 1
[0.395,0.419) 2
[0.419,0.444) 3
[0.444,1.000] 4
针铁矿蚀变异常 0.2 [0.000,0.728) 1
[0.728,0.738) 2
[0.738,0.748) 3
[0.748,1.000] 4
高铝绢云母蚀变 0.2 [0.000,0.733) 1
[0.733,0.772) 2
[0.772,0.811) 3
[0.811,1.000] 4
低铝绢云母蚀变 0.2 [0.000,0.513) 1
[0.513,0.545) 2
[0.545,0.577) 3
[0.577,1.000] 4
Tab.3  Weights of evidential layers and their respective classification
Fig.8  Classification results of evidential layers and mineral potential map of uranium
Fig.9  Field verification photos in Weijing area
[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5):689-707.
[1] Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707.
[2] 叶发旺, 孟树, 张川, 等. 甘肃龙首山芨岭铀矿床碱交代型铀矿化蚀变航空高光谱识别[J]. 地球信息科学学报, 2019, 21(2):279-292.
doi: 10.12082/dqxxkx.2019.180465
[2] Ye F W, Meng S, Zhang C, et al. Identification of alkali-metasomatism type alteration associated with uranium mineralization using airborne hyperspectral in Jiling uranium deposit in Longshoushan area,Gansu Province[J]. Journal of Geo-Information Science, 2019, 21(2):279-292.
[3] 李娜, 甘甫平, 董新丰, 等. 高分五号卫星高光谱数据岩性-构造解译初步应用评价[J]. 上海航天, 2019, 36(s2):187-191,198.
[3] Li N, Gan F P, Dong X F, et al. Preliminary application and evaluation of GF-5 satellite hyperspectral data in lithology-structure interpretation[J]. Aerospace Shanghai, 2019, 36(s2):187-191,198.
[4] Ye B, Tian S F, Cheng Q M, et al. Application of lithological mapping based on advanced hyperspectral imager (AHSI) imagery onboard Gaofen-5 (GF-5) satellite[J]. Remote Sensing, 2020, 12(23):3990.
doi: 10.3390/rs12233990 url: https://www.mdpi.com/2072-4292/12/23/3990
[5] 董新丰, 甘甫平, 李娜, 等. 高分五号高光谱影像矿物精细识别[J]. 遥感学报, 2020, 24(4):454-464.
[5] Dong X F, Gan F P, Li N, et al. Fine mineral identification of GF-5 hyperspectral image[J]. Journal of Remote Sensing, 2020, 24(4):454-464.
[6] 连琛芹, 姚佛军, 陈懋弘, 等. GF-5高光谱数据在植被覆盖区的蚀变信息提取研究——以广东省玉水铜矿为例[J]. 现代地质, 2020, 34(4):680-686.
[6] Lian C Q, Yao F J, Chen M H, et al. The study on alteration information extraction of GF-5 hyperspectral data in vegetation coverage area:A case study of the Yushui copper deposit in Guangdong Province[J]. Geoscience, 2020, 34(4):680-686.
[7] 孙雨, 刘家军, 赵英俊, 等. 基于GF-5高光谱数据的蚀变矿物填图及地质应用——以甘肃省瓜州县花牛山地区为例[J]. 中国地质, 2022, 49(2):558-574.
[7] Sun Y, Liu J J, Zhao Y J, et al. Alteration mineral mapping based on the GF-5 hyperspectral data and its geological application:An example of the Huaniushan area in Guazhou County of Gansu Province[J]. Geology in China, 2022, 49(2):558-574.
[8] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1):277-285.doi:10.6046/zrzyyg.2021036.
[8] Wang Q, Ren G L. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt,Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1):277-285.doi:10.6046/zrzyyg.2021036.
[9] 张川, 叶发旺, 徐清俊, 等. 新疆白杨河铀铍矿区航空高光谱矿物填图及蚀变特征分析[J]. 国土资源遥感, 2017, 29(2):160-166.doi:10.6046/gtzyyg.2017.02.23.
[9] Zhang C, Ye F W, Xu Q J, et al. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. Remote Sensing for Land and Resources, 2017, 29(2):160-166.doi:10.6046/gtzyyg.2017.02.23.
[10] Kumar C, Chatterjee S, Oommen T, et al. Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti,India[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 86:102006.
doi: 10.1016/j.jag.2019.102006 url: https://linkinghub.elsevier.com/retrieve/pii/S030324341930858X
[11] 余长发, 张元涛. 内蒙古卫境地区铀矿找矿预测[J]. 科学技术与工程, 2020, 20(33):13575-13582.
[11] Yu C F, Zhang Y T. Uranium prospecting in Weijing area of Inner Mongolia[J]. Science Technology and Engineering, 2020, 20(33):13575-13582.
[12] Wan L, Lin Y, Zhang H, et al. GF-5 hyperspectral data for species mapping of mangrove in Mai Po,Hong Kong[J]. Remote Sensing, 2020, 12(4):656.
doi: 10.3390/rs12040656 url: https://www.mdpi.com/2072-4292/12/4/656
[13] 孙永彬, 王瑞军, 魏本赞, 等. 高光谱遥感地空综合预测方法在新疆卡拉塔格地区铜金矿床找矿中的应用[J]. 中国地质, 2018, 45(1):178-191.
[13] Sun Y B, Wang R J, Wei B Z, et al. The application of hyperspectral remote sensing ground-air integrated prediction method to the copper gold deposit prospecting in Kalatag area,Xinjiang[J]. Geology in China, 2018, 45(1):178-191.
[14] 谭炳香, 李增元, 陈尔学, 等. EO-1 Hyperion高光谱数据的预处理[J]. 遥感信息, 2005, 20(6):36-41.
[14] Tan B X, Li Z Y, Chen E X, et al. Preprocessing of EO-1 Hyperion hyperspectral data[J]. Remote Sensing Information, 2005, 20(6):36-41.
[15] Van der Meer F D, Van der Werff H M A, Van Ruitenbeek F J A, et al. Multi-and hyperspectral geologic remote sensing:A review[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1):112-128.
doi: 10.1016/j.jag.2011.08.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243411001103
[16] 叶发旺, 孟树, 张川, 等. 航空高光谱识别的高、中、低铝绢云母矿物成因学研究[J]. 地质学报, 2018, 92(2):395-412.
[16] Ye F W, Meng S, Zhang C, et al. Minerageny study of high-Al,medium-Al and low-Al sericites identified by airborne hyperspectral remote sensing technology[J]. Acta Geologica Sinica, 2018, 92(2):395-412.
[17] 甘甫平, 王润生, 马蔼乃. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003, 10(2):445-454.
[17] Gan F P, Wang R S, Ma A N. Spectral identification tree(sit)for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 2003, 10(2):445-454.
[18] 闫柏琨, 董新丰, 王喆, 等. 航空高光谱遥感矿物信息提取技术及其应用进展——以中国西部成矿带调查为例[J]. 中国地质调查, 2016, 3(4):55-62.
[18] Yan B K, Dong X F, Wang Z, et al. Mineral information extraction technology by airborne hyperspectral remote sensing and its application progress:An example of mineralization belts of Western China[J]. Geological Survey of China, 2016, 3(4):55-62.
[19] 孙雨, 聂江涛, 田丰, 等. 相山铀矿岩芯HySpex成像高光谱数据蚀变矿物提取及其地质意义[J]. 地质与勘探, 2015, 51(1):165-174.
[19] Sun Y, Nie J T, Tian F, et al. Alteration mineral mapping of the Xiangshan uranium core using HySpex imaging hyperspectral data and its geological significance[J]. Geology and Exploration, 2015, 51(1):165-174.
[20] Tripathi M K, Govil H. Evaluation of AVIRIS-NG hyperspectral images for mineral identification and mapping[J]. Heliyon, 2019, 5(11):e02931.
doi: 10.1016/j.heliyon.2019.e02931 url: https://linkinghub.elsevier.com/retrieve/pii/S2405844019365909
[21] 梁树能, 甘甫平, 闫柏锟, 等. 白云母矿物成分与光谱特征的关系研究[J]. 国土资源遥感, 2012, 24(3):111-115.doi:10.6046/gtzyyg.2012.03.20.
[21] Liang S N, Gan F P, Yan B K, et al. Relationship between composition and spectral feature of muscovite[J]. Remote Sensing for Land and Resources, 2012, 24(3):111-115.doi:10.6046/gtzyyg.2012.03.20.
[22] 张川, 叶发旺, 王建刚, 等. 桂东北苗儿山中段向阳坪铀矿床钻孔岩心高光谱特征分析[J]. 铀矿地质, 2019, 35(6):366-372.
[22] Zhang C, Ye F W, Wang J G, et al. Spectral characteristics analysis of drill core in the Xiangyangping uranium deposit in the middle Miaoershan mountain,northeastern Guangxi[J]. Uranium Geology, 2019, 35(6):366-372.
[23] Guha A. Mineral exploration using hyperspectral data[M]. Hyperspectral Remote Sensing.Elsevier, 2020:293-318.
[24] Salehi T, Tangestani M H. Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit,using Worldview-3 VNIR data in the Northeastern Isfahan,Iran[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:156-169.
doi: 10.1016/j.jag.2018.06.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243418302022
[25] Hobbs W H. Lineaments of the Atlantic border region[J]. Geological Society of America Bulletin, 1904, 15: 483-506.
doi: 10.1130/GSAB-15-483 url: https://pubs.geoscienceworld.org/gsabulletin/article/15/1/483-506/2468
[26] 贾三石, 王恩德, 付建飞, 等. 辽西钼多金属矿床遥感影像线性体自动提取及成矿有利度分析[J]. 遥感技术与应用, 2009, 24(3):320-324,253.
[26] Jia S S, Wang E D, Fu J F, et al. Automatic extraction and ore-forming favorability analysis of linear form in remote sensing image of molybdenum polymetallic deposit in Liaoxi area[J]. Remote Sensing Technology and Application, 2009, 24(3):320-324,253.
[27] 段俊斌, 彭鹏, 杨智, 等. 基于ASTER数据的多金属成矿有利区预测[J]. 国土资源遥感, 2019, 31(3):193-200.doi:10.6046/gtzyyg.2019.03.24.
[27] Duan J B, Peng P, Yang Z, et al. Prediction of polymetallic metallogenic favorable area based on ASTER data[J]. Remote Sensing for Land and Resources, 2019, 31(3):193-200.doi:10.6046/gtzyyg.2019.03.24.
[28] Adiri Z, El Harti A, Jellouli A, et al. Comparison of Landsat-8,ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction:A case study of Sidi Flah-Bouskour inlier,Moroccan Anti Atlas[J]. Advances in Space Research, 2017, 60(11):2355-2367.
doi: 10.1016/j.asr.2017.09.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117717306397
[29] Javhar A, Chen X, Bao A, et al. Comparison of multi-resolution optical Landsat-8,Sentinel-2 and Radar Sentinel-1 data for automatic lineament extraction:A case study of Alichur area,SE Pamir[J]. Remote Sensing, 2019, 11(7):1-29.
doi: 10.3390/rs11010001 url: http://www.mdpi.com/2072-4292/11/1/1
[30] Forson E D, Menyeh A, Wemegah D D. Mapping lithological units,structural lineaments and alteration zones in the Southern Kibi-Winneba belt of Ghana using integrated geophysical and remote sensing datasets[J]. Ore Geology Reviews, 2021, 137:104271.
doi: 10.1016/j.oregeorev.2021.104271 url: https://linkinghub.elsevier.com/retrieve/pii/S0169136821002973
[31] 陈建平, 陈勇, 王全明. 基于GIS的多元信息成矿预测研究——以赤峰地区为例[J]. 地学前缘, 2008, 15(4):18-26.
[31] Chen J P, Chen Y, Wang Q M. Study on synthetic informational mineral resource prediction using GIS:A case study in Chifeng region,Inner Mongolia,China[J]. Earth Science Frontiers, 2008, 15(4):18-26.
doi: 10.1016/S1872-5791(08)60035-4 url: https://linkinghub.elsevier.com/retrieve/pii/S1872579108600354
[32] 张元涛, 余长发, 潘蔚, 等. WorldView-3影像与ASTER热红外影像在内蒙古卫境地区铀矿勘查中的应用[J]. 铀矿地质, 2020, 36(5):408-417.
[32] Zhang Y T, Yu C F, Pan W, et al. Application of WorldView-3 and ASTER TIR for the exploration of uranium in Weijing,Inner Mongolia[J]. Uranium Geology, 2020, 36(5):408-417.
[33] 余长发, 潘蔚, 张元涛, 等. 遥感技术在内蒙古苏莫查干敖包地区铀矿勘查中的应用[J]. 铀矿地质, 2018, 34(6):372-378.
[33] Yu C F, Pan W, Zhang Y T, et al. Application of remote sensing technique to uranium exploration in Sumoqagan Obo District,Inner Mongolia[J]. Uranium Geology, 2018, 34(6):372-378.
[34] 张元涛, 潘蔚, 余长发, 等. WorldView-3影像在内蒙古苏莫查干敖包地区铀矿勘查中的应用[J]. 铀矿地质, 2019, 35(2):114-121.
[34] Zhang Y T, Pan W, Yu C F, et al. Application of WorldView-3 image in uranium exploration in Sumoqagan Obo,Inner Mongolia[J]. Uranium Geology, 2019, 35(2):114-121.
[1] WANG Jiapeng, XU Jianguo, SHEN Jiaxiao, ZHANG Dengrong. Evaluating the remediation effect of heavy metal pollution in the Dexing copper mine based on hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(3): 284-291.
[2] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[3] GUO Bangjie, PAN Wei, ZHANG Chuang, ABDULLAH I. Nabhan, HASSAN Zowawi. Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia[J]. Remote Sensing for Natural Resources, 2022, 34(4): 299-306.
[4] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[5] Qinglin TIAN, Wei PAN, Yao LI, Chuan ZHANG, Xuejiao CHEN, Zhangfa YU. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41-46.
[6] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[7] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[8] Xin QI, Guangning LIU, Changsheng HUANG. Remote sensing investigation for active characteristics of Macheng-Tuanfeng fault zone segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(1): 121-127.
[9] ZHANG Chuan, YE Fawang, XU Qingjun, LIU Hongcheng, MENG Shu. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 160-166.
[10] KUAI Kaifu, XU Wenbin, HUANG Zhicai, LI Su. Remote sensing geological characteristics and prospecting of the BIF-type iron deposits in Pilbara Craton of Western Australia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 93-101.
[11] DING Rongrong, XU Jia, LIN Xiaobin, XU Kang. Monitoring of surface subsidence using PSInSAR with TerraSAR-X high resolution data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 158-164.
[12] GUO Xi, YE Yingcong, XIE Biyu, KUANG Lihua, XIE Wen. Inversion of available nitrogen content in hilly paddy soil of southern China based on hyperspectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 94-99.
[13] ZHANG Yuan, ZHANG Jielin, ZHAO Xuesheng, YUAN Bo. Extraction of mineral alteration information from core hyperspectral images based on weight of absorption peak[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 154-159.
[14] KUANG Zhong, HUANG Xinxin, KUANG Shunda, LU Zhengyan, LONG Shengqing. Distribution characteristics of remote sensing information on weak mineralization and alteration in Guizhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 140-147.
[15] ZHONG Jiangwen, PENG Yi. Analysis of relationship between belts of concentrated remote sensing linear structures and gold deposits as well as prospecting prognosis in Xiaoqinling region[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 148-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech