Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 160-166     DOI: 10.6046/gtzyyg.2017.02.23
Contents |
Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang
ZHANG Chuan1, 2, YE Fawang1, XU Qingjun1, LIU Hongcheng1, MENG Shu1
1. National Key Laboratory of Remote Sensing Information and Image Analysis Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China;
2. Faculty of Geosciences and Resources, China University of Geosciences, Beijing 100083, China
Download: PDF(1099 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The technology of hyperspectral remote sensing has the special advantages in regional alteration information extraction. Hyperspectral mineral mapping has important reference value for hydrothermal uranium exploration. In this paper, the data processing flow of CASI/SASI airborne hyperspectral remote sensing data was established and mixture tuned matched filtering was applied to realize minerals mapping in the Baiyanghe uranium and beryllium ore district, Xinjiang. The results of mineral mapping were evaluated by the field verification and the results show that the accuracy of three kinds of sericite’s mapping is higher than 85% and the accuracy of other minerals’ mapping is larger than 90%. The overlay analysis of uranium ore spots and the results of mineral mapping show that there is a significantly correlation of the characterization of spatial distribution between uranium ore spots and the alteration of hematite and Al-rich sericite. The alterations of hematite and Al-rich sericite are near the contact zone between Yangzhuang rock body and peripheral volcanic rocks and exhibit distinct characteristics of zoning. Furthermore, there may be some differences in the temperature of hydrothermal activity between the north and the south of the deposit according to the spatial distribution characteristics of three kinds of sericite, which indicates the existence of multiple hydrothermal activities in the region. The results obtained by the authors can provide references for prospecting prediction of the periphery of the ore district and regional geological genesis research.

Keywords solar radiation      land surface temperature      micro-landform      microclimate     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Shenglong
CHEN Zhibiao
CHEN Zhiqiang
WANG Qiuyun
MA Xiuli
YAN Xinyu
Cite this article:   
WEI Shenglong,CHEN Zhibiao,CHEN Zhiqiang, et al. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 160-166.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.23     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/160

[1] 甘甫平,王润生.高光谱遥感技术在地质领域中的应用[J].国土资源遥感,2007,19(4):57-60.doi:10.6046/gtzyyg.2007.04.13.
Gan F P,Wang R S.The application of the hyperspectral imaging technique to geological investigation[J].Remote Sensing for Land and Resources,2007,19(4):57-60.doi:10.6046/gtzyyg.2007.04.13.
[2] 王润生,甘甫平,闫柏琨,等.高光谱矿物填图技术与应用研究[J].国土资源遥感,2010,22(1):1-13.doi:10.6046/gtzyyg.2010.01.01.
Wang R S,Gan F P,Yan B K,et al.Hyperspectral mineral mapping and its application[J].Remote Sensing for Land and Resources,2010,22(1):1-13.doi:10.6046/gtzyyg.2010.01.01.
[3] 李志忠,杨日红,党福星,等.高光谱遥感卫星技术及其地质应用[J].地质通报,2009,28(2/3):270-277.
Li Z Z,Yang R H,Dang F X,et al.The hyperspectral remote sensing technology and its application[J].Geological Bulletin of China,2009,28(2/3):270-277.
[4] 张宗贵,王润生,郭小方,等.基于地物光谱特征的成像光谱遥感矿物识别方法[J].地学前缘,2003,10(2):437-443.
Zhang Z G,Wang R S,Guo X F,et al.Mineral recognition method by spectrometry remote sensing based on material spectral characteristics[J].Earth Science Frontiers,2003,10(2):437-443.
[5] 李子颖,张金带,秦明宽,等.中国铀矿成矿模式[M].中国核工业地质局&核工业北京地质研究院,2014:3-8.
Li Z Y,Zhang J D,Qin M K,et al.Metallogenic Models of Uranium Deposits in china[M].China Nuclear Geology & Beijing Research Institute of Uranium Geology,2014:3-8.
[6] 王 谋,李晓峰,王 果,等.新疆雪米斯坦火山岩带白杨河铍铀矿床地质特征[J].矿产勘查,2012,3(1):34-40.
Wang M,Li X F,Wang G,et al.Geological characteristics of Baiyanghe beryllium-uranium deposits in Xuemisitan volcanic belt,Xinjiang[J].Mineral Exploration,2012,3(1):34-40.
[7] 彭正林,毛先成,刘文毅,等.基于多分类器组合的遥感影像分类方法研究[J].国土资源遥感,2011,23(2):19-25.doi:10.6046/gtzyyg.2011.02.04.
Peng Z L,Mao X C,Liu W Y,et al.Method for classification of remote sensing images based on multiple classifiers combination[J].Remote Sensing for Land and Resources,2011,23(2):19-25.doi:10.6046/gtzyyg.2011.02.04.
[8] 王润生,杨苏明,闫柏琨.成像光谱矿物识别方法与识别模型评述[J].国土资源遥感,2007,19(1):1-9.doi:10.6046/gtzyyg.2007.01.01.
Wang R S,Yang S M,Yan B K.A review of mineral spectral identification methods and models with imaging spectrometer[J].Remote Sensing for Land and Resources,2007,19(1):1-9.doi:10.6046/gtzyyg.2007.01.01.
[9] 刘汉湖,杨武年,杨容浩.高光谱遥感岩矿识别方法对比研究[J].地质与勘探,2013,49(2):359-366.
Liu H H,Yang W N,Yang R H.A comparative study on the mineral identification methods using hyperspectral remote sensing data[J].Geology and Exploration,2013,49(2):359-366.
[10] 董连慧,冯 京,刘德权,等.新疆成矿单元划分方案研究[J].新疆地质,2010,28(1):1-15.
Dong L H,Feng J,Liu D Q,et al.Research for classification of metallogenic unit of Xinjiang[J].Xinjiang Geology,2010,28(1):1-15.
[11] 杨文龙,Mostafa F,李彦龙,等.西准白杨河铍矿床萤石及流体包裹体特征[J].新疆地质,2014,32(1):82-86.
Yang W L,Mostafa F,Li Y L,et al.Characteristics of fluid inclusions and fluorite of Baiyanghe beryllium deposit in western Junggar[J].Xinjiang Geology,2014,32(1):82-86.
[12] 修晓茜,范洪海,马汉峰,等.新疆白杨河铀铍矿床围岩蚀变及其地球化学特征[J].铀矿地质,2011,27(4):215-220,256.
Xiu X Q,Fan H H,Ma H F,et al.The wall rock alteration and its geochemical characteristics of Baiyanghe uranium and beryllium deposit,Xinjiang[J].Uranium Geology,2011,27(4):215-220,256.
[13] 亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感,2005,17(4):1-6.doi:10.6046/gtzyyg.2005.04.01.
Qi X Y,Tian Q J.The advances in the study of atmospheric correction for optical remote sensing[J].Remote Sensing for Land and Resources,2005,17(4):1-6.doi:10.6046/gtzyyg.2005.04.01.
[14] 刘圣伟,闫柏琨,甘甫平,等.绢云母的光谱特征变异分析及成像光谱地质成因信息提取[J].国土资源遥感,2006,18(2):46-50.doi:10.6046/gtzyyg.2006.02.12.
Liu S W,Yan B K,Gan F P,et al.An analysis of spectral features variation of sericite and the extraction of geologic genesis information by using imaging spectroscopic technique[J].Remote Sensing for Land and Resources,2006,18(2):46-50.doi:10.6046/gtzyyg.2006.02.12.
[15] 梁树能,甘甫平,闫柏锟,等.白云母矿物成分与光谱特征的关系研究[J].国土资源遥感,2012,24(3):111-115.doi:10.6046/gtzyyg.2012.03.20.
Liang S N,Gan F P,Yan B K,et al.Relationship between composition and spectral feature of muscovite[J].Remote Sensing for Land and Resources,2012,24(3):111-115.doi:10.6046/gtzyyg.2012.03.20.
[16] 黄光玉,沈占锋,赵欣梅.高光谱遥感矿物识别方法研究[J].资源环境与工程,2007,21(1):50-54.
Huang G Y,Shen Z F,Zhao X M.Discussion for discrimination method of mineral using hyperspectral remote sensing[J].Resources Environment & Engineering,2007,21(1):50-54.
[17] Boardman J W.Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives:Mixture tuned matched filtering[C]//Summaries of the Seventh Annual JPL Airborne Earth Science Workshop.Pasadena,CA:JPL Publication,1998.
[18] Herrmann W,Blake M,Doyle M,et al.Short wavelength infrared(SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis,Tasmania,and Highway-Reward,Queensland[J].Economic Geology,2001,96(5):939-955.
[19] Yang K,Lian C,Huntington J F,et al.Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit,Xinjiang,China[J].Mineralium Deposita,2005,40(3):324-336.
[20] Harraden C L,Mcnulty B A,Gregory M J,et al.Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble Porphyry Copper-Gold-Molybdenum deposit,Iliamna,Alaska[J].Economic Geology,2013,108(3):483-494.

[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[3] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[4] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[5] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[6] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[7] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[8] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[9] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[10] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[11] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[12] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[13] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[14] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[15] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech