Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 121-127     DOI: 10.6046/gtzyyg.2018.01.17
Orginal Article |
Remote sensing investigation for active characteristics of Macheng-Tuanfeng fault zone segmentation
Xin QI(), Guangning LIU, Changsheng HUANG
Wuhan Center, China Geological Survey, Wuhan 430223, China
Download: PDF(2077 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing image can reflect distribution rules and structural features of active faults exhibition space from the macro. Based on regional geological study, the authors used data preprocessing, information enhancement and data fusion to improve the degree of clarity and interpretation of remote sensing images. The interpretation keys of the fault zone were established based on the spectral characteristics and geometric flag of the remote sensing images, and the interpretation of the faults and their activities was carried out. Combined with field investigation, the macro analysis and segmentation activity study of Macheng ―Tuanfeng fault were carried out. The results show that Macheng - Tuanfeng fault zone can be divided into northern, middle and southern sections according to the intensity of the control force. The linear characteristics of the northern section are apparent in the image, and the interpretation key of the fault is remarkable. The fracture control force of the middle section is weak, whereas the linear characteristics of the image are fuzzy. The southern section is a buried fault. Remote sensing technology plays a very important role in the survey of the activity of Macheng―Tuanfeng fault zone; the application of high resolution remote sensing imagery and remote sensing image processing technology, in particular, can not only speed up the progress of the investigation but also provide guiding information for the field survey, so as to improve the survey efficiency and accuracy.

Keywords linear structure      remote sensing      Macheng-Tuanfeng fault zone      interpretation     
:  TP753  
  P542  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin QI
Guangning LIU
Changsheng HUANG
Cite this article:   
Xin QI,Guangning LIU,Changsheng HUANG. Remote sensing investigation for active characteristics of Macheng-Tuanfeng fault zone segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(1): 121-127.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.17     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/121
Fig.1  Remote sensing image and interpretation map of Macheng―Tuanfeng fault zone
Fig.2  Flow chart of remote sensing interpretation for fault zone and its activity
Fig.3  Linear image characteristics of F1 section
Fig.4  Field photo of outcrop of F1 section
Fig.5  Field photos of basalt outcrops of F1 section
Fig.6  Linear image characteristics of F2 section
Fig.7  Field photo of fault fracture zone of F2 section
Fig.8  Linear image characteristics of F3 section
Fig.9  Sketch map of fault outcrop of F3 section
[1] 张景发,陶夏新,田云锋,等.城市周边活断层探测中遥感技术的应用[J].自然灾害学报,2004,13(1):137-145.
[1] Zhang J F,Tao X X,Tian Y F,et al.Application of remote sensing technique to exploration of active fault around urb[J].Journal of Natural Disasters,2004,13(1):137-145.
[2] 甘家思,刘锁旺.鄂豫皖毗邻区的某些地震地质特征[J]. 地壳形变与地震, 1981(4):56-64.
[2] Gan J S,Liu S W.Some seismic and geologic characteristics Eyuwan contiguous zone[J]. Crustal Deformation and Earthquake, 1981(4):56-64.
[3] 古成志. 1932年湖北麻城黄土岗6级地震与麻城—团凤断裂带的新活动[J].地壳形变与地震,1981(2):83-90.
[3] Gu C Z.The new activities of Huangtugang six earthquake and Macheng―Tuanfeng fault zone in 1932[J].Crustal Deformation and Earthquake,1981(2):83-90.
[4] 谢广林. 中国活动断裂遥感信息分析[M].北京:地震出版社,2000:22-32.
[4] Xie G L.Chinese Activities Fracture Analysis of Remote Sensing[M].Beijing:Earthquake Press,2000:22-32.
[5] 雷东宁,蔡永建,郑水明,等.麻城―团风断裂带中段新活动特征及构造变形机制研究[J].大地测量与地球动力学,2012,32(1):21-25.
[5] Lei D N,Cai Y J,Zheng S M,et al.Study of quaternary activity and tectonic deformation mechanism of Macheng―Tuanfeng fault belt[J].Journal of Geodesy and Geodynamics,2012,32(1):21-25.
[6] 甘家思. 湖北麻城1932年6级地震的孕震构造模式[J].西北地震学报,1981,3(4):43-48.
[6] Gan J S.The tectonic pattern of earthquake(M=6.0) of 1932 at the Huangtugang, Macheng,Hubei Province[J].Northwestern Seismological Journal,1981,3(4):43-48.
[7] 林伟,王清晨,Faure M,等.大别山的构造变形期次和超高压岩石折返的动力学[J].地质学报,2003,77(1):44-55.
[7] Lin W,Wang Q C,Faure M,et al.Different deformation stages of the Dabieshan mountains and UHP rocks exhumation mechanism[J].Acta Geologica Sinica,2003,77(1):44-55.
[8] 郭啟倩,李盛乐,刘珠妹.断层高分辨率遥感在线解译及产状测量平台[J].国土资源遥感,2016,28(1):190-196.doi:10.6046/gtzyyg.2016.01.28.
[8] Guo Q Q,Li S L,Liu Z M.Platform of online interpretation and attitude measurement for faults using high resolution remote sensing image[J].Remote Sensing for Land and Resources,2016,28(1):190-196.doi:10.6046/gtzyyg.2016.01.28.
[9] 宿渊源,张景发,何仲太,等.资源卫星三号DEM数据在活动构造定量研究中的应用评价[J].国土资源遥感,2015,27(4):122-130.doi:10.6046/gtzyyg.2015.04.19.
[9] Su Y Y,Zhang J F,He Z T,et al.Assessment of applying ZY-3 DEM data to quantitative study of active structures[J].Remote Sensing for Land and Resources,2015,27(4):122-130.doi:10.6046/gtzyyg.2015.04.19.
[10] 刘新星,陈建平,曾敏,等.基于多源遥感数据的西藏羌多地区地质构造解译[J].国土资源遥感,2015,27(3):154-160.doi:10.6046/gtzyyg.2015.03.24.
[10] Liu X X,Chen J P,Zeng M,et al.Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J].Remote Sensing for Land and Resources,2015,27(3):154-160.doi:10.6046/gtzyyg.2015.03.24.
[11] 郑文俊,郭华,袁道阳,等.遥感影像信息在活动断裂研究中的应用[J].高原地震,2002,14(2):15-21.
[11] Zheng W J,Guo H,Yuan D Y,et al.Application of remote sensing image information in the research of active faults[J].Earthquake Research in Plateau,2002,14(2):15-21.
[12] 隋志龙,李德威,黄春霞.断裂构造的遥感研究方法综述[J].地理学与国土研究,2002,18(3):34-37,44.
[12] Sui Z L,Li D W,Huang C X.Overview of research approach of faults based on remote sensing technology[J].Geography and Territorial Research,2002,18(3):34-37,44.
[13] 韩玲,王润平.武都—文县地区遥感影像线性构造解译[J].地球科学与环境学报,2008,30(4):434-437.
[13] Han L,Wang R P.Remote sensing image interpretation of linear tectonics in Wudu-Wenxian area[J].Journal of Earth Sciences and Environment,2008,30(4):434-437.
[14] 张微,陈汉林,姚琪,等.遥感技术在孝丰―三门湾活动断裂调查中的应用——以杭州地区为例[J].浙江大学学报(理学版),2008,35(1):111-116.
[14] Zhang W,Chen H L,Yao Q,et al.Application of remote sensing technique to the surveying of Xiaofeng―Sanmenwan active faults:Based on Hangzhou area[J].Journal of Zhejiang University(Science Edition),2008,35(1):111-116.
[15] 郭卫英,柔洁,王翠.感技术在乌鲁木齐市活断层探测中的应用[J].内陆地震,2006,20(1):57-64.
[15] Guo W Y,Rou J,Wang C.Application of remote sensing technique to active fault exploration in Urumqi City[J].Inland Earthquake,2006,20(1):57-64.
[16] 范敏,黄洁,韩磊,等.西南三江地区活动断裂遥感研究[J].国土资源遥感,2010,22(s1):194-199.doi:10.6046/gtzyyg.2010.s1.40.
[16] Fan M,Huang J,Han L,et al.Remote sensing geological studies of active faults in the Three-River area of Southwest China[J].Remote Sensing for Land and Resources,2010,22(s1):194-199.doi:10.6046/gtzyyg.2010.s1.40.
[17] 张明华. 西藏墨脱公路断裂构造遥感分析及信息提取[J].国土资源遥感,2006,18(1):56-60.doi:10.6046/gtzyyg.2006.01.13.
[17] Zhang M H.The remote sensing interpretation and extraction of fault structure information for Motuo highway construction in Tibet[J].Remote Sensing for Land and Resources,2006,18(1):56-60.doi:10.6046/gtzyyg.2006.01.13.
[18] 张微,陈汉林,李启敏,等.基于遥感技术研究萧山—球川断裂带[J].科技通报,2008,24(2):156-161.
[18] Zhang W,Chen H L,Li Q M,et al.The study on Xiaoshao―Qiuchuan faults zone based on remote sensing technique[J].Bulletin of Science and Technology,2008,24(2):156-161.
[19] 杨树文,冯光胜,高山.宁武高速公路断裂构造遥感解译与评价研究[J].国土资源遥感,2010,22(2):73-76.doi:10.6046/gtzyyg.2010.02.16.
[19] Yang S W,Feng G S,Gao S.The evaluation and remote sensing interpretation of faults along the Ningwu superhighway[J].Remote Sensing for Land and Resources,2010,22(2):73-76.doi:10.6046/gtzyyg.2010.02.16.
[20] 董广昊,杨清福,杨以道.长春市隐伏断裂遥感解译[J].东北地震研究,2009,25(3):66-75.
[20] Dong G H,Yang Q F,Yang Y D.Remote sensing interpretation of buried faults in Changchun City[J].Seismological Research of Northeast China,2009,25(3):66-75.
[21] 邓辉. 高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都:成都理工大学,2007:25-35.
[21] Deng H.Application on Investigation and Evaluation of Geohazard by High-precision Satellite Remote Sensing Technique[D].Chengdu:Chengdu University of Technology,2007:25-35.
[22] 齐信,邵长生,陈州丰,等.多源遥感数据在断裂构造解译中的应用[J].大地测量与地球动力学,2012,32(4):90-93.
[22] Qi X,Shao C S,Chen Z F,et al.Application of multi-source remote sensing data in fault structure interpretation[J].Journal of Geodesy and Geodynamics,2012,32(4):90-93.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech