|
|
|
|
|
|
Information extraction of inland surface water bodies based on optical remote sensing:A review |
FENG Siwei1,2( ), YANG Qinghua2, JIA Weijie2( ), WANG Mengfei2, LIU Lei3 |
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 3. China National Geological & Mining Corporation, Beijing 100020, China |
|
|
Abstract Inland surface water bodies, including rivers, lakes, and reservoirs, are significant freshwater resources for human beings and ecology, and their monitoring and control are greatly significant. Optical remote sensing provides great convenience for the monitoring of surface water resources, proving to be an important means for the information extraction and dynamic monitoring of inland surface water bodies. This study reviews the basic principles, remote sensing data sources, methods, existing issues, and prospects of the information extraction of water bodies. Owing to the unique characteristics of the remote sensing images of inland surface water bodies, their information can be extracted in an accurate, scientific, and effective manner using remote sensing. Multiple remote sensing data resources can be applied to the information extraction, and the optical remote sensing-based extraction methods include the threshold value method, classifier method, object orientation method, and deep learning method. Given that different methods have unique advantages, disadvantages, and applicable conditions, selecting appropriate multi-source data and varying methods based on the conditions of study areas tend to improve the information extraction accuracy. Nevertheless, there still exist some issues in the optical remote sensing-based water body information extraction, such as the balance of spatiotemporal resolution of remote sensing data, the information mining of water body characteristics, the generalization ability of water body models, and the uniformity of criteria for accuracy evaluation.
|
Keywords
optical remote sensing
water body extraction
data source
extraction method
|
|
Issue Date: 03 September 2024
|
|
|
[1] |
崔青林, 汪鸣泉, 黄永健. 融合随机森林模型和6种水体指数的上海市水体信息提取[J]. 测绘通报, 2022(2):106-109.
doi: 10.13474/j.cnki.11-2246.2022.0052
|
[1] |
Cui Q L, Wang M Q, Huang Y J. Water information extraction in Shanghai by integrating random forest model and six water indices[J]. Bulletin of Surveying and Mapping, 2022(2):106-109.
doi: 10.13474/j.cnki.11-2246.2022.0052
|
[2] |
Li J J, Meng Y Z, Li Y X, et al. Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning[J]. Journal of Hydrology, 2022, 612:128202.
|
[3] |
姜浩. 基于光学遥感的高精度陆地水体提取方法研究[D]. 北京: 中国科学院大学, 2015.
|
[3] |
Jiang H. Research on high-precision extraction method of land terrestrial water body based on optical remote sensing imagery[D]. Beijing: University of Chinese Academy of Sciences, 2015.
|
[4] |
王航, 秦奋. 遥感影像水体提取研究综述[J]. 测绘科学, 2018, 43(5):23-32.
|
[4] |
Wang H, Qin F. Summary of the research on water body extraction and application from remote sensing image[J]. Science of Surveying and Mapping, 2018, 43(5):23-32.
|
[5] |
李德仁, 眭海刚, 单杰. 论地理国情监测的技术支撑[J]. 武汉大学学报 (信息科学版), 2012, 37(5):505-512,502.
|
[5] |
Li D R, Sui H G, Shan J. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):505-512,502.
|
[6] |
Huang C, Chen Y, Zhang S, et al. Detecting,extracting,and monitoring surface water from space using optical sensors:A review[J]. Reviews of Geophysics, 2018, 56(2):333-360.
|
[7] |
李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2):147-161.
|
[7] |
Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2):147-161.
|
[8] |
梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001.
|
[8] |
Mei A X, Peng W L, Qin Q M, et al. Introduction to remote sensing[M]. Beijing: Higher Education Press, 2001.
|
[9] |
李小涛, 黄诗峰, 郭怀轩. 基于纹理特征的SPOT 5影像水体提取方法研究[J]. 人民黄河, 2010, 32(12):5-6.
|
[9] |
Li X T, Huang S F, Guo H X. Research on water extraction method from SPOT 5 images based on texture features[J]. Yellow River, 2010, 32(12):5-6.
|
[10] |
卞艳. 遥感影像水体提取方法研究[D]. 鞍山: 辽宁科技大学, 2022.
|
[10] |
Bian Y. Study on extraction method of water body from remote sensing image[D]. Anshan: University of Science and Technology Liaoning, 2022.
|
[11] |
许君一, 徐富宝, 张雅琼, 等. 基于灰度共生矩阵的未利用地疑似污染遥感识别[J]. 北京工业大学学报, 2018, 44(11):1423-1433.
|
[11] |
Xu J Y, Xu F B, Zhang Y Q, et al. Monitoring suspected pollution on unutilized land using gray-level co-occurrence matrices[J]. Journal of Beijing University of Technology, 2018, 44(11):1423-1433.
|
[12] |
彭文杰. 内陆湖泊湖流纹理分析及提取研究[D]. 赣州: 江西理工大学, 2021.
|
[12] |
Peng W J. Research on analysis and extraction of inland lake stream texture[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
|
[13] |
王浩. 基于小波变换的高光谱遥感图像融合研究[D]. 南昌: 南昌航空大学, 2019.
|
[13] |
Wang H. The study on hyperspectral remote sensing image fusion based on wavelet transform[D]. Nanchang: Nanchang Hangkong University, 2019.
|
[14] |
肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5):40-54.
doi: 10.3778/j.issn.1002-8331.2209-0122
|
[14] |
Xiao Y, Zhou J. Overview of image edge detection[J]. Computer Engineering and Applications, 2023, 59(5):40-54.
doi: 10.3778/j.issn.1002-8331.2209-0122
|
[15] |
Qiao C, Luo J, Sheng Y, et al. An adaptive water extraction method from remote sensing image based on NDWI[J]. Journal of the In-dian Society of Remote Sensing, 2012, 40(3):421-433.
|
[16] |
史宜梦. 基于多源遥感数据的黄河源区河流水体提取与径流量反演研究[D]. 邯郸: 河北工程大学, 2021.
|
[16] |
Shi Y M. Study on water body extraction and discharge inversion in the source region of the yellow river based on multi-source remote sensing data[D]. Handan: Hebei University of Engineering, 2021.
|
[17] |
金岩丽. 基于云平台的Landsat卫星数据水体提取方法研究[D]. 鞍山: 辽宁科技大学, 2021.
|
[17] |
Jin Y L. Landsat satellite data based on cloud platform research on water extraction methods[D]. Anshan: University of Science and Technology Liaoning, 2021.
|
[18] |
王鹏程. 基于形态学的遥感图像河流分割方法研究[D]. 兰州: 兰州交通大学, 2021.
|
[18] |
Wang P C. Research on river segmentation method of remote sensing image based on morphology[D]. Lanzhou: Lanzhou Jiaotong University, 2021.
|
[19] |
柴宝惠. 基于机器学习和图像形态学的彩色近代地图数字化——以近代上海地区地表水体信息提取为例[J]. 历史地理研究, 2022, 42(2):117-133,158-159.
|
[19] |
Chai B H. Digitization of old maps based on machine learning and image morphology:An example of surface water extraction in mo-dern Shanghai[J]. The Chinese Historical Geography, 2022, 42(2):117-133,158-159.
|
[20] |
马鹏. 基于形态学的遥感图像地表水体分割与监测方法研究[D]. 兰州: 兰州交通大学, 2018.
|
[20] |
Ma P. Research on remote sensing image segmentation and monitoring method of surface water based on morphology[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
|
[21] |
赵程铭, 董晓华, 薄会娟, 等. 基于GF-1影像的山区河道丰、枯水期水体提取方法改进[J]. 中国农村水利水电, 2022(9):155-161.
|
[21] |
Zhao C M, Dong X H, Bo H J, et al. Improving water body extraction method in a mountainous river in wet and dry seasons based on GF-1 images[J]. China Rural Water and Hydropower, 2022(9):155-161.
|
[22] |
Prigent C, Papa F, Aires F, et al. Global inundation dynamics inferred from multiple satellite observations,1993—2000[J]. Journal of Geophysical Research:Atmospheres, 2007, 112:D12107.
|
[23] |
侯幸幸. 基于DoubleU-Net的中分辨率遥感影像高原湖泊提取研究[D]. 广州: 广州大学, 2022.
|
[23] |
Hou X X. Medium resolution remote sensing image based on DoubleU-Net study on extraction of plateau lake[D]. Guangzhou: Guangzhou University, 2022.
|
[24] |
李健锋, 叶虎平, 张宗科, 等. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报, 2019, 21(5):781-788.
doi: 10.12082/dqxxkx.2019.180643.
|
[24] |
Li J F, Ye H P, Zhang Z K, et al. Spatiotemporal change analysis of Sri Lanka inland water based on Landsat imagery[J]. Journal of Geo-Information Science, 2019, 21(5):781-788.
|
[25] |
Zhuang Y, Chen C. A method for water body extraction based on the tasselled cap transformation from remote sensing images[C]// 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA).IEEE, 2018:336-340.
|
[26] |
洪亮, 黄雅君, 杨昆, 等. 复杂环境下高分二号遥感影像的城市地表水体提取[J]. 遥感学报, 2019, 23(5):871-882.
|
[26] |
Hong L, Huang Y J, Yang K, et al. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J]. Journal of Remote Sensing, 2019, 23(5):871-882.
|
[27] |
杨艺苑. 基于多源遥感数据的德阳市水体提取及时空动态变化研究[D]. 成都: 四川师范大学, 2022.
|
[27] |
Yang Y Y. Research on water extraction and temporal and spatial dynamic change in Deyang City based on multi-source remote sensing data[D]. Chengdu: Sichuan Normal University, 2022.
|
[28] |
白翠, 向洋, 邱春霞, 等. 基于多源遥感数据的水体提取方法研究[J]. 人民黄河, 2021, 43(7):78-83.
|
[28] |
Bai C, Xiang Y, Qiu C X, et al. Research on water extraction method based on multi-source remote sensing data[J]. Yellow River, 2021, 43(7):78-83.
|
[29] |
Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing:Journal of the American Society of Photogrammetry, 2000, 66(12):1461-1467.
|
[30] |
毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析[J]. 遥感信息, 2012, 27(5):77-82.
|
[30] |
Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2012, 27(5):77-82.
|
[31] |
杜云艳, 周成虎. 水体的遥感信息自动提取方法[J]. 遥感学报, 1998, 2(4):364-369.
|
[31] |
Du Y Y, Zhou C H. Automatically extracting remote sensing information for water bodies[J]. National Remote Sensing Bulletin, 1998, 2(4):364-369.
|
[32] |
Chen C, Chen H, Liang J, et al. Extraction of water body information from remote sensing imagery while considering greenness and wetness based on tasseled cap transformation[J]. Remote Sensing, 2022, 14(13):3001.
|
[33] |
McFeeters S K. The use of the normalized difference water index(NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
|
[34] |
徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
|
[34] |
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
|
[35] |
闫霈, 张友静, 张元. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007, 22(6):62-67.
|
[35] |
Yan P, Zhang Y J, Zhang Y. A study on information extraction of water system in semi-arid regions with the enhanced water index (EWI) and GIS based noise remove techniques[J]. Remote Sensing Information, 2007, 22(6):62-67.
|
[36] |
丁凤. 一种基于遥感数据快速提取水体信息的新方法[J]. 遥感技术与应用, 2009, 24(2):167-171.
|
[36] |
Ding F. A new method for fast information extraction of water bodies using remotely sensed data[J]. Remote Sensing Technology and Application, 2009, 24(2):167-171.
|
[37] |
Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35.
|
[38] |
Fisher A, Flood N, Danaher T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016, 175:167-182.
|
[39] |
王小标, 谢顺平, 都金康. 水体指数构建及其在复杂环境下有效性研究[J]. 遥感学报, 2018, 22(2):360-372.
|
[39] |
Wang X B, Xie S P, Du J K. Water index formulation and its effectiveness research on the complicated surface water surroundings[J]. Journal of Remote Sensing, 2018, 22(2):360-372.
|
[40] |
邓开元, 任超. 多光谱光学遥感影像水体提取模型[J]. 测绘学报, 2021, 50(10):1370-1379.
doi: 10.11947/j.AGCS.2021.20200482
|
[40] |
Deng K Y, Ren C. Water extraction model of multispectral optical remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1370-1379.
doi: 10.11947/j.AGCS.2021.20200482
|
[41] |
雷盛磊, 张鹏飞, 王新鹏, 等. 基于Landsat8数据的水体指数模型研究[J]. 应用数学进展, 2022, 11(3):1178-1186.
|
[41] |
Lei S L, Zhang P F, Wang X P, et al. Study on water index construction based on Landsat8 data[J]. Advances in Applied Mathematics, 2022, 11(3):1178-1186.
|
[42] |
吴庆双, 汪明秀, 申茜, 等. Sentinel-2遥感图像的细小水体提取[J]. 遥感学报, 2022, 26(4):781-794.
|
[42] |
Wu Q S, Wang M X, Shen Q, et al. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image[J]. National Remote Sensing Bulletin, 2022, 26(4):781-794.
|
[43] |
王春霞, 张俊, 李屹旭, 等. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
|
[43] |
Wang C X, Zhang J, Li Y X, et al. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
|
[44] |
Niu L, Kaufmann H, Xu G, et al. Triangle water index (TWI):An advanced approach for more accurate detection and delineation of water surfaces in Sentinel-2 data[J]. Remote Sensing, 2022, 14(21):5289.
|
[45] |
张成才, 娄洋, 李颖, 等. 基于像元二分模型的伏牛山地区植被覆盖度变化[J]. 水土保持研究, 2020, 27(3):301-307.
|
[45] |
Zhang C C, Lou Y, Li Y, et al. Change of vegetation coverage in Funiu Mountain regions based on the dimidiate pixel model[J]. Research of Soil and Water Conservation, 2020, 27(3):301-307.
|
[46] |
李文苹. 基于像元分解的内陆地表水提取方法研究——以黄河流域不同水体类型为例[D]. 西安: 西北大学, 2017.
|
[46] |
Li W P. Study on extraction method of inland surface water body based on pixel unmixing:A case study of different water body types in the Yellow River basin[D]. Xi'an: Northwest University, 2017.
|
[47] |
赖佩玉, 陈浩宁, 黄昌. 像元二分模型在MODIS水陆混合像元分解中的适用性研究[J]. 测绘地理信息, 2019, 44(6):56-59.
|
[47] |
Lai P Y, Chen H N, Huang C. Study on the suitability of dimidiate pixel model in surface water detection of MODIS at sub-pixel level[J]. Journal of Geomatics, 2019, 44(6):56-59.
|
[48] |
杨修国. 关于直方图双峰法的研究与改进[J]. 电子设计工程, 2012, 20(12):176-179.
|
[48] |
Yang X G. Research and improvement on the histogram bimodal method[J]. Electronic Design Engineering, 2012, 20(12):176-179.
|
[49] |
陈景珏, 刘瑞, 杨鑫, 等. 改进Otsu与形态学相结合的水体信息提取[J]. 遥感信息, 2022, 37(1):101-109.
|
[49] |
Chen J J, Liu R, Yang X, et al. Water information extraction based on improved Otsu and morphology[J]. Remote Sensing Information, 2022, 37(1):101-109.
|
[50] |
贾祎琳, 张文, 孟令奎. 面向GF-1影像的NDWI分割阈值选取方法研究[J]. 国土资源遥感, 2019, 31(1):95-100.doi:10.6046/gtzyyg.2019.01.13.
|
[50] |
Jia Y L, Zhang W, Meng L K. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land and Resources, 2019, 31(1):95-100.doi:10.6046/gtzyyg.2019.01.13.
|
[51] |
王增林, 朱大明. 基于遥感影像的最大似然分类算法的探讨[J]. 河南科学, 2010, 28(11):458-461.
|
[51] |
Wang Z L, Zhu D M. A study of maximum likelihood classification algorithm based on remote sensing image[J]. Henan Science, 2010, 28(11):458-461.
|
[52] |
马铭, 苟长龙. 遥感数据最小距离分类的几种算法[J]. 测绘通报, 2017(3):157-159.
|
[52] |
Ma M, Gou C L. Several algorithms for minimum distance classification of remote sensing data[J]. Bulletin of Surveying and Mapping, 2017(3):157-159.
|
[53] |
于一凡, 潘军, 邢立新, 等. 基于马氏距离的遥感图像高温目标识别方法研究[J]. 遥感信息, 2013, 28(5):90-94.
|
[53] |
Yu Y F, Pan J, Xing L X, et al. Identification of high temperature targets in remote sensing imagery based on Mahalanobis distance[J]. Remote Sensing Information, 2013, 28(5):90-94.
|
[54] |
殷亚秋, 李家国, 余涛, 等. 基于高分辨率遥感影像的面向对象水体提取方法研究[J]. 测绘通报, 2015(1):81-85.
|
[54] |
Yin Y Q, Li J G, Yu T, et al. The study of object-oriented water body extraction method based on high resolution RS image[J]. Bulletin of Surveying and Mapping, 2015(1):81-85.
doi: 10.13474/j.cnki.11-2246.2015.0016
|
[55] |
Song J, Gao S H, Zhu Y Q, et al. A survey of remote sensing image classification based on CNNs[J]. Big Earth Data, 2019, 3(3):232-254,
|
[56] |
Vapnik V N. The nature of statistical learning theory[M]. Berlin: Springer Science and Business Media, 1999.
|
[57] |
唐淑兰. 基于多尺度分析和机器学习的遥感影像找矿预测及填图方法研究[D]. 西安: 长安大学, 2021.
|
[57] |
Tang S L. Research on remote sensing image prospecting prediction and mapping method based on multi-scale analysis and machine learning[D]. Xi'an: Chang'an University, 2021.
|
[58] |
Paul A, Tripathi D, Dutta D. Application and comparison of advanced supervised classifiers in extraction of water bodies from remote sensing images[J]. Sustainable Water Resources Management, 2018, 4(4):905-919.
|
[59] |
段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
|
[59] |
Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resources, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
|
[60] |
韩文龙. 基于TransUNet的微小水体遥感信息提取算法研究[D]. 廊坊: 北华航天工业学院, 2022.
|
[60] |
Han W L. Research on remote sensing information extraction algorithm of tiny water body based on TransUNet[D]. Langfang: North China Institute of Aerospace Engineering, 2022.
|
[61] |
董哲, 王凌, 朱西存, 等. 光谱模型结合面向对象法的山区水体提取[J]. 遥感信息, 2022, 37(4):121-127.
|
[61] |
Dong Z, Wang L, Zhu X C, et al. Water extraction in mountainous area based on spectral model and object-oriented method[J]. Remote Sensing Information, 2022, 37(4):121-127.
|
[62] |
王鑫, 徐明君, 肖坚, 等. 基于融合视觉词袋的高分遥感水体提取算法[J]. 系统仿真学报, 2022, 34(5):1033-1043.
doi: 10.16182/j.issn1004731x.joss.20-0977
|
[62] |
Wang X, Xu M J, Xiao J, et al. Water body extraction from high resolution remote sensing images based on fused visual word bags[J]. Journal of System Simulation, 2022, 34(5):1033-1043.
doi: 10.16182/j.issn1004731x.joss.20-0977
|
[63] |
杨佳佳. 基于多源遥感数据的青海格尔木地区岩矿信息提取研究[D]. 长春: 吉林大学, 2012.
|
[63] |
Yang J J. Study on the extraction of mineral information in Geermu of Qinghai Province based on multi-source remote sensing data[D]. Changchun: Jilin University, 2012.
|
[64] |
Xu K, Wang X F, Kong C F, et al. Identification of hydrothermal alteration minerals for exploring gold deposits based on SVM and PCA using ASTER data:A case study of Gulong[J]. Remote Sensing, 2019, 11(24):3003.
|
[65] |
陈静波, 刘顺喜, 汪承义, 等. 基于知识决策树的城市水体提取方法研究[J]. 遥感信息, 2013, 28(1):29-33,37.
|
[65] |
Chen J B, Liu S X, Wang C Y, et al. Research on urban water body extraction using knowledge-based decision tree[J]. Remote Sensing Information, 2013, 28(1):29-33,37.
|
[66] |
陈艳华, 张万昌. 地理信息系统支持下的山区遥感影像决策树分类[J]. 国土资源遥感, 2006, 18(1):69-74.doi:10.6046/gtzyyg.2006.01.16.
|
[66] |
Chen Y H, Zhang W C. GIS supported decision tree classification of remote sensing images in mountainous areas[J]. Remote Sensing for Land and Resources, 2006, 18(1):69-74.doi:10.6046/gtzyyg.2006.01.16.
|
[67] |
胡卫国, 孟令奎, 张东映, 等. 资源一号02C星图像水体信息提取方法[J]. 国土资源遥感, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.
|
[67] |
Hu W G, Meng L K, Zhang D Y, et al. Methods of water extraction from ZY-1 02C satellite imagery[J]. Remote Sensing for Land and Resources, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.
|
[68] |
Belgiu M, Drăguţ L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
|
[69] |
赵书慧, 段会川, 高帅, 等. 基于随机森林的MODIS遥感影像水体分类研究[J]. 山东师范大学学报(自然科学版), 2018, 33(1):19-25.
|
[69] |
Zhao S H, Duan H C, Gao S, et al. Water classification of MODIS remote sensing image based on random forests[J]. Journal of Shandong Normal University(Natural Science), 2018, 33(1):19-25.
|
[70] |
王杰. 基于面向对象分类和CNN的土地覆盖遥感提取[D]. 合肥: 安徽大学, 2020.
|
[70] |
Wang J. Remote sensing based extraction of land cover using object-oriented classification and CNN[D]Hefei: Anhui University, 2020.
|
[71] |
Kaplan G, Avdan U. Object-based water body extraction model using Sentinel-2 satellite imagery[J]. European Journal of Remote Sensing, 2017, 50(1):137-143.
|
[72] |
Chen G Y, Cai Z H, Li X. Recognition and classification of high resolution remote sensing image based on convolutional neural network[J]. International Journal of Performability Engineering, 2018, 14(11):2852-2863.
|
[73] |
林蕾. 基于循环神经网络模型的遥感影像时间序列分类及变化检测方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.
|
[73] |
Lin L. Satellite image time series classification and change detection based on recurrent neural network model[D]. Beijing: University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth), 2018.
|
[74] |
李礁, 钟乐海, 邢伟寅. 卷积神经网络船舶遥感图像目标检测[J]. 舰船科学技术, 2022, 44(7):146-149.
|
[74] |
Li J, Zhong L H, Xing W Y. Object detection in ship remote sensing images based on convolutional neural networks[J]. Ship Science and Technology, 2022, 44(7):146-149.
|
[75] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE, 2015:3431-3440.
|
[76] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham:Springer, 2015:234-241.
|
[77] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[78] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
|
[79] |
Zhao H S Shi, J P, Qi X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:6230-6239.
|
[80] |
何海清, 杜敬, 陈婷, 等. 结合水体指数与卷积神经网络的遥感水体提取[J]. 遥感信息, 2017, 32(5):82-86.
|
[80] |
He H Q, Du J, Chen T, et al. Remote sensing image water body extraction combing NDWI with convolutional neural network[J]. Remote Sensing Information, 2017, 32(5):82-86.
|
[81] |
王宁, 程家骅, 张寒野, 等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
|
[81] |
Wang N, Cheng J H, Zhang H Y, et al. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
|
[82] |
郑泰皓, 王庆涛, 李家国, 等. 基于深度学习的高分六号影像水体自动提取[J]. 科学技术与工程, 2021, 21(4):1459-1470.
|
[82] |
Zheng T H, Wang Q T, Li J G, et al. Automatic water extraction from GF-6 image based on deep learning[J]. Science Technology and Engineering, 2021, 21(4):1459-1470.
|
[83] |
沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
|
[83] |
Shen J A, Ma M T, Song Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
|
[84] |
张铭飞, 高国伟, 胡敬芳, 等. 基于卷积神经网络的遥感图像水体提取[J]. 传感器与微系统, 2022, 41(1):72-74,88.
|
[84] |
Zhang M F, Gao G W, Hu J F, et al. Water extraction from remote sensing images based on CNN[J]. Transducer and Microsystem Technologies, 2022, 41(1):72-74,88.
|
[85] |
Guo H X, He G J, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):189.
|
[86] |
Yu Y T, Yao Y T, Guan H Y, et al. A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery[J]. International Journal of Remote Sensing, 2021, 42(5):1801-1822.
|
[87] |
孙娜, 高志强, 王晓晶, 等. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4):173-178.doi:10.6046/gtzyyg.2017.04.26.
|
[87] |
Sun N, Gao Z Q, Wang X J, et al. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. Remote Sensing for Land and Resources, 2017, 29(4):173-178.doi:10.6046/gtzyyg.2017.04.26.
|
[88] |
Wu B, Zhang J, Zhao Y. A novel method to extract narrow water using a top-hat white transform enhancement technique[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3):391-400.
|
[89] |
Li Q W, Lan H X, Zhao X X, et al. River centerline extraction using the multiple direction integration algorithm for mixed and pure water pixels[J]. GIScience and Remote Sensing, 2019, 56(2):256-281.
|
[90] |
Zhang Y, Jin R, Zhou Z H. Understanding bag-of-words model:A statistical framework[J]. International Journal of Machine Learning and Cybernetics, 2010, 1(1):43-52.
|
[91] |
Lian S, Chen J, Luo M. A probability-based statistical method to extract water body of TM images with missing information[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016,XLI-B2:21-26.
|
[92] |
Zhang X R, Xu W B, Hu Y, et al. Extracting land surface water from FY/MERSI image based on spectral matching of discrete particle swarm optimization and linear feature enhancement[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019: 6887-6890.
|
[93] |
Yue H, Li Y, Qian J X, et al. A new accuracy evaluation method for water body extraction[J]. International Journal of Remote Sensing, 2020, 41(19):7311-7342.
|
[94] |
王小娜, 田金炎, 李小娟, 等. Google Earth Engine云平台对遥感发展的改变[J]. 遥感学报, 2022, 26(2):299-309.
|
[94] |
Wang X N, Tian J Y, Li X J, et al. Benefits of Google Earth Engine in remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(2):299-309.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|