Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 41-56     DOI: 10.6046/zrzyyg.2023123
|
Information extraction of inland surface water bodies based on optical remote sensing:A review
FENG Siwei1,2(), YANG Qinghua2, JIA Weijie2(), WANG Mengfei2, LIU Lei3
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
3. China National Geological & Mining Corporation, Beijing 100020, China
Download: PDF(1303 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Inland surface water bodies, including rivers, lakes, and reservoirs, are significant freshwater resources for human beings and ecology, and their monitoring and control are greatly significant. Optical remote sensing provides great convenience for the monitoring of surface water resources, proving to be an important means for the information extraction and dynamic monitoring of inland surface water bodies. This study reviews the basic principles, remote sensing data sources, methods, existing issues, and prospects of the information extraction of water bodies. Owing to the unique characteristics of the remote sensing images of inland surface water bodies, their information can be extracted in an accurate, scientific, and effective manner using remote sensing. Multiple remote sensing data resources can be applied to the information extraction, and the optical remote sensing-based extraction methods include the threshold value method, classifier method, object orientation method, and deep learning method. Given that different methods have unique advantages, disadvantages, and applicable conditions, selecting appropriate multi-source data and varying methods based on the conditions of study areas tend to improve the information extraction accuracy. Nevertheless, there still exist some issues in the optical remote sensing-based water body information extraction, such as the balance of spatiotemporal resolution of remote sensing data, the information mining of water body characteristics, the generalization ability of water body models, and the uniformity of criteria for accuracy evaluation.

Keywords optical remote sensing      water body extraction      data source      extraction method     
ZTFLH:  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Siwei FENG
Qinghua YANG
Weijie JIA
Mengfei WANG
Lei LIU
Cite this article:   
Siwei FENG,Qinghua YANG,Weijie JIA, et al. Information extraction of inland surface water bodies based on optical remote sensing:A review[J]. Remote Sensing for Natural Resources, 2024, 36(3): 41-56.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023123     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/41
类别 卫星/传感器 波段数 空间分辨
率/m
重访周期/d 天底最大
幅宽/km
分发策略
(是否付费)
数据可用性
低空间分辨率 NOAA/AVHRR 5 1 100 0.5 2 800 1978年至今
MODIS 36 250~1 000 0.5 2 330 1999年至今
Suomi NPP-VIIRS 22 375~750 0.5 3 040 2012年至今
MERIS 15 300 3 1 150 2002—2012年
Sentinel-3 OLCI 21 300 2 1 270 2016年至今
中等空间分辨率 Landsat 4~9 15~80 16 185 1972年至今
SPOT 4~5 2.5~20 26 120 1986年至今
ASTER 14 15~90 16 60 1999年至今
Sentinel-2 MSI 13 10~60 5 290 2015年至今
高空间分辨率 IKONOS 5 1~4 1.5~3 11.3 1999年至今
QuickBird 5 0.61~2.24 2.7 16.5 2001年至今
WorldView 4~17 0.31~2.40 1~4 17.6 2007年至今
RapidEye 5 5 1~5.5 77 2008年至今
ZY-3 4 2.1~5.8 5 50 2012年至今
GF-1/2 5 1~16 4~5 800 2013年至今
Tab.1  Common remote sensing data sources for water body extraction
名称 计算公式 参考文献 时间 优点 缺点
NDWI N D W I = G - N I R G + N I R McFeeters[33] 1996年 能够有效增强水体光谱特征 容易混淆水体与城镇建筑信息
MNDWI M N D W I = G - M I R G + M I R 徐涵秋[34] 2005年 加强了水体与建筑物等噪声的反差 容易混淆水体和阴影
EWI E W I = G - N I R - M I R G + N I R + M I R 闫霈等[35] 2007年 可有效地区分半干涸河道与背景噪音 不适用于无中红外波段的传感器影像
NWI N W I = B - ( N I R + S W I R 1 + S W I R 2 ) B + ( N I R + S W I R 1 + S W I R 2 ) C 丁凤[36] 2009年 利用了水体在Landsat ETM+B7的强吸收特性 不适用于无中红外波段的传感器影像
AWEInsh/AWEIsh A W E I n s h = 4 ( G - S W I R 1 ) - ( 0.25 N I R + 2.75 S W I R 2 )
A W E I s h = B + 2.5 G - 1.5 ( N I R + S W I R 1 ) - 0.25 S W I R 2
Feyisa等[37] 2014年 可提供较稳定的分割阈值 不适用于如冰雪、白色建筑物等高反射率的地物
WI2015 W I 2015 = 1.720 ? 4 + 171 G + 3 R - 70 N I R - 45 S W I R 1 - 71 S W I R 2 Fisher等[38] 2015年 可区分多种水体类型且遗漏误差较低 分类需要多层决策且阈值设定较为主观
MBWI M B W I = 2 R - N I R - S W I R 1 - T I R - S W I R 2 王小标等[39] 2018年 可用于提取复杂地表环境下的水体 不适用于细小水体
NDMBWI N D M B W I = 3 G - B + 2 R - 5 N I R 3 G + B + 2 R + 5 N I R 邓开元等[40] 2021年 可有效排除雪、云、阴影的影响 最优阈值不能一直保持在0
GRN-WI G R N W I = G + R - 2 N I R 雷盛磊等[41] 2022年 能够有效抑制冰雪、阴影等噪声 对于GF等数据源的有效性尚未验证
RWI R W I = ( B 3 + B 5 ) - ( B 8 + B 8 A + B 12 ) ( B 3 + B 5 ) + ( B 8 + B 8 A + B 12 ) 吴庆双等[42] 2019年 可以有效提取细小水体 需要用到植被红边波段,不适用于其他传感器
CWI C W I = 3 N I R - G - B 王春霞等[43] 2022年 能应对复杂环境,减少阴影、建筑物等影响 需要结合图像分割以抑制噪声
TWI T W I = 2.84 ( B 5 - B 6 ) B 3 + B 12 + 1.25 ( B 3 - B 2 ) - ( B 8 - B 2 ) B 8 + 1.25 B 3 - 0.25 B 2 Niu等[44] 2022年 可提高提取以不同水量为特征的水体的准确性 针对Sentinel的光谱设计特点定制,对于其他数据源的适用性有待验证
Tab.2  Common water body indices and their advantages and disadvantages
类别 代表文献 方法 原理 数据源 实验结果
精度评价
优点 缺点
阈值法 [29] 单波段法 基于
光谱
特征
Landsat TM 总体精度96.90% 简单快速 不能利用水体多个波段的光谱信息,易混入阴影噪声
[30] 谱间关系法 Landsat TM 总体精度94.09% 适用于山地地区水体提取 容易混杂建筑物信息
水体指数法 种类较多,见表2
分类器
方法
[28] SVM 基于
特征
融合
Sentinel-2 总体精度96.00%,Kappa系数0.919 9 理论基础坚实,方法成熟稳定 不同的核函数、参数和样本的选取对性能影响较大
[65] 决策树 SPOT-5 检测率86.18%,虚警率13.82% 分类准则容易可视化,易于理解分析 容易发生过拟合,容易忽略数据集中属性的相互关联
[1] RF Sentinel-2 总体精度97.91% 能够有效处理具有高维特征的输入样本,且不需要特征选择 小数据或者低维数据(特征较少的数据),可能不能产生很好的分类
[54] 最大似然法 基于
光谱
特征
SPOT-5 总体精度92.70%,Kappa系数0.827 1 实行较为简单快速,其密度分布函数可以有效解释分类结果 仅适用于波段较少的数据,且对训练样本要求较高
最小距离
分类法
总体精度89.84%,Kappa系数0.739 2 原理简单,容易理解,计算速度快 只考虑每一类样本的均值,分类精度较低
马氏距离
分类法
总体精度85.16%,Kappa系数0.520 6 能够有效区分水体和背景 存在非水体被过度分类的问题
面向
对象
方法
[54] 面向对象
方法
基于
特征
融合
SPOT-5 总体精度97.72%,Kappa系数0.944 5 可降低“同物异谱,异物同谱”的影响,抑制椒盐噪声 精度受到分割结果的质量和分类规则有效区分性的影响
深度
学习
方法
[80] CNN 基于特
征融合
ZY-3 准确率81.40%,错分率8.91% 可处理高维数据,特征分类效果较好 需要调参,需要大样本量,每个卷积层的物理含义不明确
[85] FCN 基于
特征
融合
GF-1 总体精度98.52% 通过多个卷积层提取特征 上采样过程对图像中的细节不敏感,可能导致小水体被忽略,水体的边界被平滑
U-Net 总体精度98.18% 没有较深的层数,且分割效果优良 融合了太多由浅卷积层提取的低层特征,这些低层特征图可能与具有和水体相似光谱特征的噪声的错误有关
DeepLab
总体精度91.82% 适用于复杂场景中的像素级分割 水体提取过程中,容易过度提取
Tab.3  Methods for water extraction
[1] 崔青林, 汪鸣泉, 黄永健. 融合随机森林模型和6种水体指数的上海市水体信息提取[J]. 测绘通报, 2022(2):106-109.
doi: 10.13474/j.cnki.11-2246.2022.0052
[1] Cui Q L, Wang M Q, Huang Y J. Water information extraction in Shanghai by integrating random forest model and six water indices[J]. Bulletin of Surveying and Mapping, 2022(2):106-109.
doi: 10.13474/j.cnki.11-2246.2022.0052
[2] Li J J, Meng Y Z, Li Y X, et al. Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning[J]. Journal of Hydrology, 2022, 612:128202.
[3] 姜浩. 基于光学遥感的高精度陆地水体提取方法研究[D]. 北京: 中国科学院大学, 2015.
[3] Jiang H. Research on high-precision extraction method of land terrestrial water body based on optical remote sensing imagery[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[4] 王航, 秦奋. 遥感影像水体提取研究综述[J]. 测绘科学, 2018, 43(5):23-32.
[4] Wang H, Qin F. Summary of the research on water body extraction and application from remote sensing image[J]. Science of Surveying and Mapping, 2018, 43(5):23-32.
[5] 李德仁, 眭海刚, 单杰. 论地理国情监测的技术支撑[J]. 武汉大学学报 (信息科学版), 2012, 37(5):505-512,502.
[5] Li D R, Sui H G, Shan J. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):505-512,502.
[6] Huang C, Chen Y, Zhang S, et al. Detecting,extracting,and monitoring surface water from space using optical sensors:A review[J]. Reviews of Geophysics, 2018, 56(2):333-360.
[7] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2):147-161.
[7] Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2):147-161.
[8] 梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001.
[8] Mei A X, Peng W L, Qin Q M, et al. Introduction to remote sensing[M]. Beijing: Higher Education Press, 2001.
[9] 李小涛, 黄诗峰, 郭怀轩. 基于纹理特征的SPOT 5影像水体提取方法研究[J]. 人民黄河, 2010, 32(12):5-6.
[9] Li X T, Huang S F, Guo H X. Research on water extraction method from SPOT 5 images based on texture features[J]. Yellow River, 2010, 32(12):5-6.
[10] 卞艳. 遥感影像水体提取方法研究[D]. 鞍山: 辽宁科技大学, 2022.
[10] Bian Y. Study on extraction method of water body from remote sensing image[D]. Anshan: University of Science and Technology Liaoning, 2022.
[11] 许君一, 徐富宝, 张雅琼, 等. 基于灰度共生矩阵的未利用地疑似污染遥感识别[J]. 北京工业大学学报, 2018, 44(11):1423-1433.
[11] Xu J Y, Xu F B, Zhang Y Q, et al. Monitoring suspected pollution on unutilized land using gray-level co-occurrence matrices[J]. Journal of Beijing University of Technology, 2018, 44(11):1423-1433.
[12] 彭文杰. 内陆湖泊湖流纹理分析及提取研究[D]. 赣州: 江西理工大学, 2021.
[12] Peng W J. Research on analysis and extraction of inland lake stream texture[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[13] 王浩. 基于小波变换的高光谱遥感图像融合研究[D]. 南昌: 南昌航空大学, 2019.
[13] Wang H. The study on hyperspectral remote sensing image fusion based on wavelet transform[D]. Nanchang: Nanchang Hangkong University, 2019.
[14] 肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5):40-54.
doi: 10.3778/j.issn.1002-8331.2209-0122
[14] Xiao Y, Zhou J. Overview of image edge detection[J]. Computer Engineering and Applications, 2023, 59(5):40-54.
doi: 10.3778/j.issn.1002-8331.2209-0122
[15] Qiao C, Luo J, Sheng Y, et al. An adaptive water extraction method from remote sensing image based on NDWI[J]. Journal of the In-dian Society of Remote Sensing, 2012, 40(3):421-433.
[16] 史宜梦. 基于多源遥感数据的黄河源区河流水体提取与径流量反演研究[D]. 邯郸: 河北工程大学, 2021.
[16] Shi Y M. Study on water body extraction and discharge inversion in the source region of the yellow river based on multi-source remote sensing data[D]. Handan: Hebei University of Engineering, 2021.
[17] 金岩丽. 基于云平台的Landsat卫星数据水体提取方法研究[D]. 鞍山: 辽宁科技大学, 2021.
[17] Jin Y L. Landsat satellite data based on cloud platform research on water extraction methods[D]. Anshan: University of Science and Technology Liaoning, 2021.
[18] 王鹏程. 基于形态学的遥感图像河流分割方法研究[D]. 兰州: 兰州交通大学, 2021.
[18] Wang P C. Research on river segmentation method of remote sensing image based on morphology[D]. Lanzhou: Lanzhou Jiaotong University, 2021.
[19] 柴宝惠. 基于机器学习和图像形态学的彩色近代地图数字化——以近代上海地区地表水体信息提取为例[J]. 历史地理研究, 2022, 42(2):117-133,158-159.
[19] Chai B H. Digitization of old maps based on machine learning and image morphology:An example of surface water extraction in mo-dern Shanghai[J]. The Chinese Historical Geography, 2022, 42(2):117-133,158-159.
[20] 马鹏. 基于形态学的遥感图像地表水体分割与监测方法研究[D]. 兰州: 兰州交通大学, 2018.
[20] Ma P. Research on remote sensing image segmentation and monitoring method of surface water based on morphology[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
[21] 赵程铭, 董晓华, 薄会娟, 等. 基于GF-1影像的山区河道丰、枯水期水体提取方法改进[J]. 中国农村水利水电, 2022(9):155-161.
[21] Zhao C M, Dong X H, Bo H J, et al. Improving water body extraction method in a mountainous river in wet and dry seasons based on GF-1 images[J]. China Rural Water and Hydropower, 2022(9):155-161.
[22] Prigent C, Papa F, Aires F, et al. Global inundation dynamics inferred from multiple satellite observations,1993—2000[J]. Journal of Geophysical Research:Atmospheres, 2007, 112:D12107.
[23] 侯幸幸. 基于DoubleU-Net的中分辨率遥感影像高原湖泊提取研究[D]. 广州: 广州大学, 2022.
[23] Hou X X. Medium resolution remote sensing image based on DoubleU-Net study on extraction of plateau lake[D]. Guangzhou: Guangzhou University, 2022.
[24] 李健锋, 叶虎平, 张宗科, 等. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报, 2019, 21(5):781-788.
doi: 10.12082/dqxxkx.2019.180643.
[24] Li J F, Ye H P, Zhang Z K, et al. Spatiotemporal change analysis of Sri Lanka inland water based on Landsat imagery[J]. Journal of Geo-Information Science, 2019, 21(5):781-788.
[25] Zhuang Y, Chen C. A method for water body extraction based on the tasselled cap transformation from remote sensing images[C]// 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA).IEEE, 2018:336-340.
[26] 洪亮, 黄雅君, 杨昆, 等. 复杂环境下高分二号遥感影像的城市地表水体提取[J]. 遥感学报, 2019, 23(5):871-882.
[26] Hong L, Huang Y J, Yang K, et al. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J]. Journal of Remote Sensing, 2019, 23(5):871-882.
[27] 杨艺苑. 基于多源遥感数据的德阳市水体提取及时空动态变化研究[D]. 成都: 四川师范大学, 2022.
[27] Yang Y Y. Research on water extraction and temporal and spatial dynamic change in Deyang City based on multi-source remote sensing data[D]. Chengdu: Sichuan Normal University, 2022.
[28] 白翠, 向洋, 邱春霞, 等. 基于多源遥感数据的水体提取方法研究[J]. 人民黄河, 2021, 43(7):78-83.
[28] Bai C, Xiang Y, Qiu C X, et al. Research on water extraction method based on multi-source remote sensing data[J]. Yellow River, 2021, 43(7):78-83.
[29] Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing:Journal of the American Society of Photogrammetry, 2000, 66(12):1461-1467.
[30] 毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析[J]. 遥感信息, 2012, 27(5):77-82.
[30] Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2012, 27(5):77-82.
[31] 杜云艳, 周成虎. 水体的遥感信息自动提取方法[J]. 遥感学报, 1998, 2(4):364-369.
[31] Du Y Y, Zhou C H. Automatically extracting remote sensing information for water bodies[J]. National Remote Sensing Bulletin, 1998, 2(4):364-369.
[32] Chen C, Chen H, Liang J, et al. Extraction of water body information from remote sensing imagery while considering greenness and wetness based on tasseled cap transformation[J]. Remote Sensing, 2022, 14(13):3001.
[33] McFeeters S K. The use of the normalized difference water index(NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[34] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
[34] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[35] 闫霈, 张友静, 张元. 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007, 22(6):62-67.
[35] Yan P, Zhang Y J, Zhang Y. A study on information extraction of water system in semi-arid regions with the enhanced water index (EWI) and GIS based noise remove techniques[J]. Remote Sensing Information, 2007, 22(6):62-67.
[36] 丁凤. 一种基于遥感数据快速提取水体信息的新方法[J]. 遥感技术与应用, 2009, 24(2):167-171.
[36] Ding F. A new method for fast information extraction of water bodies using remotely sensed data[J]. Remote Sensing Technology and Application, 2009, 24(2):167-171.
[37] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35.
[38] Fisher A, Flood N, Danaher T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016, 175:167-182.
[39] 王小标, 谢顺平, 都金康. 水体指数构建及其在复杂环境下有效性研究[J]. 遥感学报, 2018, 22(2):360-372.
[39] Wang X B, Xie S P, Du J K. Water index formulation and its effectiveness research on the complicated surface water surroundings[J]. Journal of Remote Sensing, 2018, 22(2):360-372.
[40] 邓开元, 任超. 多光谱光学遥感影像水体提取模型[J]. 测绘学报, 2021, 50(10):1370-1379.
doi: 10.11947/j.AGCS.2021.20200482
[40] Deng K Y, Ren C. Water extraction model of multispectral optical remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1370-1379.
doi: 10.11947/j.AGCS.2021.20200482
[41] 雷盛磊, 张鹏飞, 王新鹏, 等. 基于Landsat8数据的水体指数模型研究[J]. 应用数学进展, 2022, 11(3):1178-1186.
[41] Lei S L, Zhang P F, Wang X P, et al. Study on water index construction based on Landsat8 data[J]. Advances in Applied Mathematics, 2022, 11(3):1178-1186.
[42] 吴庆双, 汪明秀, 申茜, 等. Sentinel-2遥感图像的细小水体提取[J]. 遥感学报, 2022, 26(4):781-794.
[42] Wu Q S, Wang M X, Shen Q, et al. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image[J]. National Remote Sensing Bulletin, 2022, 26(4):781-794.
[43] 王春霞, 张俊, 李屹旭, 等. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
[43] Wang C X, Zhang J, Li Y X, et al. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
[44] Niu L, Kaufmann H, Xu G, et al. Triangle water index (TWI):An advanced approach for more accurate detection and delineation of water surfaces in Sentinel-2 data[J]. Remote Sensing, 2022, 14(21):5289.
[45] 张成才, 娄洋, 李颖, 等. 基于像元二分模型的伏牛山地区植被覆盖度变化[J]. 水土保持研究, 2020, 27(3):301-307.
[45] Zhang C C, Lou Y, Li Y, et al. Change of vegetation coverage in Funiu Mountain regions based on the dimidiate pixel model[J]. Research of Soil and Water Conservation, 2020, 27(3):301-307.
[46] 李文苹. 基于像元分解的内陆地表水提取方法研究——以黄河流域不同水体类型为例[D]. 西安: 西北大学, 2017.
[46] Li W P. Study on extraction method of inland surface water body based on pixel unmixing:A case study of different water body types in the Yellow River basin[D]. Xi'an: Northwest University, 2017.
[47] 赖佩玉, 陈浩宁, 黄昌. 像元二分模型在MODIS水陆混合像元分解中的适用性研究[J]. 测绘地理信息, 2019, 44(6):56-59.
[47] Lai P Y, Chen H N, Huang C. Study on the suitability of dimidiate pixel model in surface water detection of MODIS at sub-pixel level[J]. Journal of Geomatics, 2019, 44(6):56-59.
[48] 杨修国. 关于直方图双峰法的研究与改进[J]. 电子设计工程, 2012, 20(12):176-179.
[48] Yang X G. Research and improvement on the histogram bimodal method[J]. Electronic Design Engineering, 2012, 20(12):176-179.
[49] 陈景珏, 刘瑞, 杨鑫, 等. 改进Otsu与形态学相结合的水体信息提取[J]. 遥感信息, 2022, 37(1):101-109.
[49] Chen J J, Liu R, Yang X, et al. Water information extraction based on improved Otsu and morphology[J]. Remote Sensing Information, 2022, 37(1):101-109.
[50] 贾祎琳, 张文, 孟令奎. 面向GF-1影像的NDWI分割阈值选取方法研究[J]. 国土资源遥感, 2019, 31(1):95-100.doi:10.6046/gtzyyg.2019.01.13.
[50] Jia Y L, Zhang W, Meng L K. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land and Resources, 2019, 31(1):95-100.doi:10.6046/gtzyyg.2019.01.13.
[51] 王增林, 朱大明. 基于遥感影像的最大似然分类算法的探讨[J]. 河南科学, 2010, 28(11):458-461.
[51] Wang Z L, Zhu D M. A study of maximum likelihood classification algorithm based on remote sensing image[J]. Henan Science, 2010, 28(11):458-461.
[52] 马铭, 苟长龙. 遥感数据最小距离分类的几种算法[J]. 测绘通报, 2017(3):157-159.
[52] Ma M, Gou C L. Several algorithms for minimum distance classification of remote sensing data[J]. Bulletin of Surveying and Mapping, 2017(3):157-159.
[53] 于一凡, 潘军, 邢立新, 等. 基于马氏距离的遥感图像高温目标识别方法研究[J]. 遥感信息, 2013, 28(5):90-94.
[53] Yu Y F, Pan J, Xing L X, et al. Identification of high temperature targets in remote sensing imagery based on Mahalanobis distance[J]. Remote Sensing Information, 2013, 28(5):90-94.
[54] 殷亚秋, 李家国, 余涛, 等. 基于高分辨率遥感影像的面向对象水体提取方法研究[J]. 测绘通报, 2015(1):81-85.
[54] Yin Y Q, Li J G, Yu T, et al. The study of object-oriented water body extraction method based on high resolution RS image[J]. Bulletin of Surveying and Mapping, 2015(1):81-85.
doi: 10.13474/j.cnki.11-2246.2015.0016
[55] Song J, Gao S H, Zhu Y Q, et al. A survey of remote sensing image classification based on CNNs[J]. Big Earth Data, 2019, 3(3):232-254,
[56] Vapnik V N. The nature of statistical learning theory[M]. Berlin: Springer Science and Business Media, 1999.
[57] 唐淑兰. 基于多尺度分析和机器学习的遥感影像找矿预测及填图方法研究[D]. 西安: 长安大学, 2021.
[57] Tang S L. Research on remote sensing image prospecting prediction and mapping method based on multi-scale analysis and machine learning[D]. Xi'an: Chang'an University, 2021.
[58] Paul A, Tripathi D, Dutta D. Application and comparison of advanced supervised classifiers in extraction of water bodies from remote sensing images[J]. Sustainable Water Resources Management, 2018, 4(4):905-919.
[59] 段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
[59] Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resources, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
[60] 韩文龙. 基于TransUNet的微小水体遥感信息提取算法研究[D]. 廊坊: 北华航天工业学院, 2022.
[60] Han W L. Research on remote sensing information extraction algorithm of tiny water body based on TransUNet[D]. Langfang: North China Institute of Aerospace Engineering, 2022.
[61] 董哲, 王凌, 朱西存, 等. 光谱模型结合面向对象法的山区水体提取[J]. 遥感信息, 2022, 37(4):121-127.
[61] Dong Z, Wang L, Zhu X C, et al. Water extraction in mountainous area based on spectral model and object-oriented method[J]. Remote Sensing Information, 2022, 37(4):121-127.
[62] 王鑫, 徐明君, 肖坚, 等. 基于融合视觉词袋的高分遥感水体提取算法[J]. 系统仿真学报, 2022, 34(5):1033-1043.
doi: 10.16182/j.issn1004731x.joss.20-0977
[62] Wang X, Xu M J, Xiao J, et al. Water body extraction from high resolution remote sensing images based on fused visual word bags[J]. Journal of System Simulation, 2022, 34(5):1033-1043.
doi: 10.16182/j.issn1004731x.joss.20-0977
[63] 杨佳佳. 基于多源遥感数据的青海格尔木地区岩矿信息提取研究[D]. 长春: 吉林大学, 2012.
[63] Yang J J. Study on the extraction of mineral information in Geermu of Qinghai Province based on multi-source remote sensing data[D]. Changchun: Jilin University, 2012.
[64] Xu K, Wang X F, Kong C F, et al. Identification of hydrothermal alteration minerals for exploring gold deposits based on SVM and PCA using ASTER data:A case study of Gulong[J]. Remote Sensing, 2019, 11(24):3003.
[65] 陈静波, 刘顺喜, 汪承义, 等. 基于知识决策树的城市水体提取方法研究[J]. 遥感信息, 2013, 28(1):29-33,37.
[65] Chen J B, Liu S X, Wang C Y, et al. Research on urban water body extraction using knowledge-based decision tree[J]. Remote Sensing Information, 2013, 28(1):29-33,37.
[66] 陈艳华, 张万昌. 地理信息系统支持下的山区遥感影像决策树分类[J]. 国土资源遥感, 2006, 18(1):69-74.doi:10.6046/gtzyyg.2006.01.16.
[66] Chen Y H, Zhang W C. GIS supported decision tree classification of remote sensing images in mountainous areas[J]. Remote Sensing for Land and Resources, 2006, 18(1):69-74.doi:10.6046/gtzyyg.2006.01.16.
[67] 胡卫国, 孟令奎, 张东映, 等. 资源一号02C星图像水体信息提取方法[J]. 国土资源遥感, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.
[67] Hu W G, Meng L K, Zhang D Y, et al. Methods of water extraction from ZY-1 02C satellite imagery[J]. Remote Sensing for Land and Resources, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.
[68] Belgiu M, Drăguţ L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
[69] 赵书慧, 段会川, 高帅, 等. 基于随机森林的MODIS遥感影像水体分类研究[J]. 山东师范大学学报(自然科学版), 2018, 33(1):19-25.
[69] Zhao S H, Duan H C, Gao S, et al. Water classification of MODIS remote sensing image based on random forests[J]. Journal of Shandong Normal University(Natural Science), 2018, 33(1):19-25.
[70] 王杰. 基于面向对象分类和CNN的土地覆盖遥感提取[D]. 合肥: 安徽大学, 2020.
[70] Wang J. Remote sensing based extraction of land cover using object-oriented classification and CNN[D]Hefei: Anhui University, 2020.
[71] Kaplan G, Avdan U. Object-based water body extraction model using Sentinel-2 satellite imagery[J]. European Journal of Remote Sensing, 2017, 50(1):137-143.
[72] Chen G Y, Cai Z H, Li X. Recognition and classification of high resolution remote sensing image based on convolutional neural network[J]. International Journal of Performability Engineering, 2018, 14(11):2852-2863.
[73] 林蕾. 基于循环神经网络模型的遥感影像时间序列分类及变化检测方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.
[73] Lin L. Satellite image time series classification and change detection based on recurrent neural network model[D]. Beijing: University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth), 2018.
[74] 李礁, 钟乐海, 邢伟寅. 卷积神经网络船舶遥感图像目标检测[J]. 舰船科学技术, 2022, 44(7):146-149.
[74] Li J, Zhong L H, Xing W Y. Object detection in ship remote sensing images based on convolutional neural networks[J]. Ship Science and Technology, 2022, 44(7):146-149.
[75] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE, 2015:3431-3440.
[76] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham:Springer, 2015:234-241.
[77] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[78] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
[79] Zhao H S Shi, J P, Qi X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:6230-6239.
[80] 何海清, 杜敬, 陈婷, 等. 结合水体指数与卷积神经网络的遥感水体提取[J]. 遥感信息, 2017, 32(5):82-86.
[80] He H Q, Du J, Chen T, et al. Remote sensing image water body extraction combing NDWI with convolutional neural network[J]. Remote Sensing Information, 2017, 32(5):82-86.
[81] 王宁, 程家骅, 张寒野, 等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
[81] Wang N, Cheng J H, Zhang H Y, et al. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
[82] 郑泰皓, 王庆涛, 李家国, 等. 基于深度学习的高分六号影像水体自动提取[J]. 科学技术与工程, 2021, 21(4):1459-1470.
[82] Zheng T H, Wang Q T, Li J G, et al. Automatic water extraction from GF-6 image based on deep learning[J]. Science Technology and Engineering, 2021, 21(4):1459-1470.
[83] 沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
[83] Shen J A, Ma M T, Song Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
[84] 张铭飞, 高国伟, 胡敬芳, 等. 基于卷积神经网络的遥感图像水体提取[J]. 传感器与微系统, 2022, 41(1):72-74,88.
[84] Zhang M F, Gao G W, Hu J F, et al. Water extraction from remote sensing images based on CNN[J]. Transducer and Microsystem Technologies, 2022, 41(1):72-74,88.
[85] Guo H X, He G J, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):189.
[86] Yu Y T, Yao Y T, Guan H Y, et al. A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery[J]. International Journal of Remote Sensing, 2021, 42(5):1801-1822.
[87] 孙娜, 高志强, 王晓晶, 等. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4):173-178.doi:10.6046/gtzyyg.2017.04.26.
[87] Sun N, Gao Z Q, Wang X J, et al. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. Remote Sensing for Land and Resources, 2017, 29(4):173-178.doi:10.6046/gtzyyg.2017.04.26.
[88] Wu B, Zhang J, Zhao Y. A novel method to extract narrow water using a top-hat white transform enhancement technique[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3):391-400.
[89] Li Q W, Lan H X, Zhao X X, et al. River centerline extraction using the multiple direction integration algorithm for mixed and pure water pixels[J]. GIScience and Remote Sensing, 2019, 56(2):256-281.
[90] Zhang Y, Jin R, Zhou Z H. Understanding bag-of-words model:A statistical framework[J]. International Journal of Machine Learning and Cybernetics, 2010, 1(1):43-52.
[91] Lian S, Chen J, Luo M. A probability-based statistical method to extract water body of TM images with missing information[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016,XLI-B2:21-26.
[92] Zhang X R, Xu W B, Hu Y, et al. Extracting land surface water from FY/MERSI image based on spectral matching of discrete particle swarm optimization and linear feature enhancement[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019: 6887-6890.
[93] Yue H, Li Y, Qian J X, et al. A new accuracy evaluation method for water body extraction[J]. International Journal of Remote Sensing, 2020, 41(19):7311-7342.
[94] 王小娜, 田金炎, 李小娟, 等. Google Earth Engine云平台对遥感发展的改变[J]. 遥感学报, 2022, 26(2):299-309.
[94] Wang X N, Tian J Y, Li X J, et al. Benefits of Google Earth Engine in remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(2):299-309.
[1] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[2] ZHAO Hui, CHEN Zhen, FENG Chaofan, ZHANG Tong, ZHAO Xuejing, ZHANG Zhaoxu. Monitoring of the area of Poyang Lake based on Landsat images and its relationship with the water level[J]. Remote Sensing for Natural Resources, 2024, 36(2): 198-206.
[3] JIANG Ruirui, GAN Fuping, GUO Yi, YAN Bokun. Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 1-13.
[4] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[5] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[6] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[7] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[8] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[11] WANG Mi, PAN Jun. A NEW COLOR BALANCE METHOD FOR LARGE-SCALE SEAMLESS IMAGE DATABASE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 10-13.
[12] WANG Xiao-Hong, NIE Hong-Feng, LI Cheng-Zun, WANG Jin. THE APPLICATION OF CHARACTERISTICS OF DIFFERENT REMOTE
SENSING DATA SOURCES TO THE INVESTIGATION OF THE
MINING SITUATION AND ENVIRONMENT OF MINES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 69-71.
[13] QI Xue-Yong, TIAN Qing-Jiu. THE ADVANCES IN THE STUDY OF ATMOSPHERIC
CORRECTION FOR OPTICAL REMOTE SENSING
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech