Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 81-89     DOI: 10.6046/zrzyyg.2022320
|
Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images
YU Shaohuai(), XU Qiao(), YU Fei
CCCC Second Highway Consultants Co., Ltd., Wuhan 430056,China
Download: PDF(4561 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Assessing the landslide susceptibility of highways in precarious mountainous areas can provide crucial information for the geologic route selection of highways. Conventional landslide susceptibility assessment methods ignore the application of surface deformation data and other dynamic data, leading to low-accuracy assessment results. Hence, this study proposed a landslide susceptibility assessment method for mountain highways based on optical and SAR remote sensing images. With the Longwuxia-Gongboxia section of the Yanhuang Highway in Qinghai Province as the study area, this study extracted various static factors of landslides from high-resolution QuickBird satellite images and calculated the initial risk level of landslide susceptibility within the route area using a random forest model. Afterward, this study obtained the surface deformation factors, which directly reflect the dynamic changes of landslides, based on the long-time-series Sentinel-1A images. Finally, this study corrected the initial landslide susceptibility risk level based on the surface deformation factors, generating a landslide susceptibility assessment zoning map. As demonstrated by engineering practice, the method proposed in this study yielded a high-accuracy landslide susceptibility assessment zoning map for the mountain highway by combining data on both static and dynamic factors of landslides, thus providing accurate information for subsequent geologic route selection of the highway.

Keywords landslide susceptibility assessment      optical remote sensing      SAR      mountain highway      random forest     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaohuai YU
Qiao XU
Fei YU
Cite this article:   
Shaohuai YU,Qiao XU,Fei YU. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022320     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/81
评价因素 评价指标 指标来源
地质条件 与构造线的距离 利用高分遥感影像解译的地质构造线,利用GIS分析计算得到
水文条件 与沟谷的距离 利用DEM数据进行汇水分析,提取研究区内的沟谷线,然后计算与沟谷的距离
湿度指数 依据DEM数据,利用GIS分析软件SAGA计算得到
地形地貌 高程 直接利用DEM数据
坡度 依据DEM数据,利用GIS分析软件SAGA计算得到
坡向
坡长
坡高
斜坡类型
地表覆盖 NDVI 依据高分遥感影像,利用遥感处理软件ENVI计算各植被指数
SRI
ARVI
EVI
土地利用 对高分遥感影像进行分类
Tab.1  Landslide susceptibility assessment factor table
Fig.1  Schematic diagram of random forest model construction
Fig.2  SABS-InSAR processing flow chart
滑坡易发
性风险初
始等级
形变等级
低形变区 中等形变区 高形变区 极高形变区
低易发区 0 +1 +2 +3
中易发区 0 0 +1 +2
高易发区 0 0 0 +1
极高易发区 0 0 0 0
Tab.2  Landslide susceptibility risk level update table
Fig.3  Schematic diagram of the scope and topography of the study area
Fig.4  Remote sensing interpretation map of historical landslides in the study area
编号 影像日期 入射角/(°) 编号 影像日期 入射角/(°) 编号 影像日期 入射角/(°)
1 2018-01-14 39.483 14 2018-11-22 39.485 27 2019-09-30 39.489
2 2018-02-07 39.484 15 2018-12-16 39.483 28 2019-10-24 39.486
3 2018-03-03 39.485 16 2019-01-09 39.485 29 2019-11-17 39.485
4 2018-03-27 39.486 17 2019-02-02 39.484 30 2019-12-23 39.483
5 2018-04-20 39.490 18 2019-02-26 39.484 31 2020-01-16 39.483
6 2018-05-14 39.490 19 2019-03-22 39.485 32 2020-02-09 39.485
7 2018-06-07 39.490 20 2019-04-15 39.491 33 2020-03-04 39.485
8 2018-07-01 39.491 21 2019-05-09 39.490 34 2020-03-28 39.486
9 2018-07-25 39.490 22 2019-06-02 39.490 35 2020-04-21 39.490
10 2018-08-18 39.490 23 2019-06-26 39.491 36 2020-05-15 39.490
11 2018-09-11 39.489 24 2019-07-20 39.491 37 2020-06-08 39.491
12 2018-10-05 39.489 25 2019-08-13 39.491 方位向分辨率: 13.91 m
13 2018-10-29 39.486 26 2019-09-06 39.490 距离向分辨率: 2.33 m
Tab.3  Sentinel-1A image information table
Fig.5  Distribution map of deformation rate along the radar line of sight in the study area from 2018 to 2020
Fig.6  Distribution map of deformation rate along the slope in the study area from 2018 to 2020
Fig.7  Landslide susceptibility initial assessment zoning map in the study area
Fig.8  Landslide susceptibility evaluation zoning map in the study area
Fig.9  Comparative analysis chart of landslide susceptibility risk levels in local key areas
类型 易发性等级 分级面积/km2 分级面积
占比/%
滑坡样本分
级面积/km2
滑坡样本面积
分级占比/%
频率比
初始易发性分级 低易发区 34.806 4 60.65 0.967 2 45.43 0.749 1
中易发区 11.143 8 19.42 0.372 8 17.51 0.901 6
高易发区 7.427 7 12.94 0.323 0 15.18 1.173 1
极高易发区 4.009 6 6.99 0.465 7 21.88 3.130 2
结合形变特征的易发性分级 低易发区 33.435 2 58.26 0.689 2 32.37 0.555 6
中易发区 11.673 4 20.34 0.396 3 18.62 0.915 4
高易发区 7.846 2 13.67 0.474 2 22.28 1.629 8
极高易发区 4.432 7 7.73 0.569 0 26.73 3.458 0
Tab.4  Landslide susceptibility evaluation accuracy statistics table
[1] 李文娟, 邵海. 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划[J]. 中国地质灾害与防治学报, 2021, 32(2):94-99.
[1] Li W J, Shao H. Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor eValuation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2):94-99.
[2] 黄海峰, 薛蓉花, 赵蓓蓓, 等. 孕灾机理与综合遥感结合的三峡库首顺层岩质滑坡隐患识别[J]. 测绘学报, 2022, 51(10):2056-2068.
doi: 10.11947/j.AGCS.2022.20220306
[2] Huang H F, Xue R H, Zhao B B, et al. The bedding rock landslide identification in the head area of the Three Gorges Reservoir combined with disaster pregnant mechanism and comprehensive remote sensing method[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2056-2068.
doi: 10.11947/j.AGCS.2022.20220306
[3] 贾伟洁, 王治华. 基于高分辨率遥感影像的滑坡活动特征及稳定性分析——以东苗家滑坡为例[J]. 国土资源遥感, 2019, 31(4):174-181.doi:10.6046/gtzyyg.2019.04.23.
[3] Jia W J, Wang Z H. Landslide activity characteristics and stability analysis based on high-resolution remote sensing image:A case study of Dongmiaojia landslide[J]. Remote Sensing for Land and Resources, 2019, 31(4):174-181.
[4] Youssef A M, Pourghasemi H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia[J]. Geoscience Frontiers, 2021, 12(2):639-655.
doi: 10.1016/j.gsf.2020.05.010 url: https://linkinghub.elsevier.com/retrieve/pii/S1674987120301298
[5] 胡致远, 罗文强, 晏鄂川, 等. 基于改进层次分析法的英山县地质灾害易发性评价[J]. 安全与环境工程, 2018, 25(4):28-32.
[5] Hu Z Y, Luo W Q, Yan E C, et al. IAHP-based evaluation of susceptibility of geological hazards in Yingshan County[J]. Safety and Environmental Engineering, 2018, 25(4):28-32.
[6] 刘阳. 延长县滑坡地质灾害风险评估和管理研究[D]. 西安: 长安大学, 2009.
[6] Liu Y. The extention of geologal disasters of landslide risk assessment and management research in the Yanchang County[D]. Xi’an: Changan University, 2009.
[7] Hong H, Chen W, Xu C, et al. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio,certainty factor,and index of entropy[J]. Geocarto International, 2017, 32(2):139-154.
[8] 周晓亭, 黄发明, 吴伟成, 等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 2022, 54(3):25-35.
[8] Zhou X T, Huang F M, Wu W C, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences, 2022, 54(3):25-35.
[9] 刘月, 王宁涛, 周超, 等. 基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价[J]. 安全与环境工程, 2020, 27(4):61-70.
[9] Liu Y, Wang N T, Zhou C, et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County,Three Gorges Reservoir[J]. Safety and Environmental Engineering, 2020, 27(4):61-70.
[10] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[10] Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[11] 刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045.
doi: 10.11947/j.AGCS.2022.20220326
[11] Liu J P, Liang E J, Xu S H, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2034-2045.
doi: 10.11947/j.AGCS.2022.20220326
[12] 吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1):321-330.
[12] Wu R Z, Hu X D, Mei H B, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021, 46(1):321-330.
[13] 徐乔, 余飞, 余绍淮. 基于多源遥感数据的山区铁路滑坡危险性评价[J]. 铁道工程学报, 2021, 38(11):8-14.
[13] Xu Q, Yu F, Yu S H. Landslide hazard assessment of mountain railways based on multi-source remote sensing data[J]. Journal of Railway Engineering Society, 2021, 38(11):8-14.
[14] 王卫东, 何卓磊, 韩征, 等. 基于深度信念网络的滑坡敏感性评价[J]. 东北大学学报(自然科学版), 2020, 41(5):609-615.
doi: 10.12068/j.issn.1005-3026.2020.05.001
[14] Wang W D, He Z L, Han Z, et al. Landslides susceptibility assessment based on deep belief network[J]. Journal of Northeastern University( Natural Science), 2020, 41(5):609-615.
[15] 余绍淮, 徐乔, 罗博仁. 时序InSAR技术在山区公路遥感地质勘察中的应用[J]. 公路, 2021, 66(10):251-257.
[15] Yu S H, Xu Q, Luo B R. Application of time series InSAR technology in remote sensing geological survey of mountainous highway[J]. Highway, 2021, 66(10):251-257.
[16] 赵富萌, 张毅, 孟兴民, 等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质, 2020, 47(1): 142-152.
[16] Zhao F M, Zhang Y, Meng X M, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(1):142-152.
[17] 张腾, 谢帅, 黄波, 等. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2):213-219.doi:10.6046/gtzyyg.2020206.
[17] Zhang T, Xie S, Huang B, et al. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land and Resources, 2021, 33(2):213-219.doi:10.6046/gtzyyg.2020206.
[18] 朱玉. 基于PS-InSAR的贵州省大方县、纳雍县滑坡易发性评价[D]. 北京: 中国地质大学(北京), 2020.
[18] Zhu Y. Landslide susceptibility assessment of Dafang and Nayong County of Guizhou Province combining with PS-InSAR[D]. Beijing: China University of Geosciences(Beijing), 2020.
[19] 杨强. 基于时序InSAR技术的皮力青河流域滑坡易发性研究[D]. 成都: 成都理工大学, 2019.
[19] Yang Q. Research on landslide susceptibility based on time series InSAR technology in PiLi Qing River Basin[D]. Chengdu: Chengdu University of Technology, 2019.
[20] 徐乔, 张霄, 余绍淮, 等. 综合多特征的极化SAR图像随机森林分类算法[J]. 遥感学报, 2019, 23(4): 685-694.
[20] Xu Q, Zhang X, Yu S H, et al. Multi-feature-based classification method using random forest and superpixels for polarimetric SAR images[J]. Journal of Remote Sensing, 2019, 23(4):685-694.
[21] 柳明星, 刘建红, 马敏飞, 等. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1):218-229.doi:10.6046/zrzyyg.2021112.
[21] Liu M X, Liu J H, Ma M F, et al. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm:A case study of Linxia,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):218-229.doi:10.6046/zrzyyg.2021112.
[22] Ferretti A, Prati C, Rocca F, et al. Permanent scatters in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
doi: 10.1109/36.898661 url: http://ieeexplore.ieee.org/document/898661/
[23] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792 url: http://ieeexplore.ieee.org/document/1166596/
[24] 张诗茄, 蒋建军, 缪亚敏, 等. 基于SBAS技术的岷江流域潜在滑坡识别[J]. 山地学报, 2018, 36(1):91-97.
[24] Zhang S J, Jiang J J, Miao Y M, et al. Application of the SBAS technique in potential landslide identification in the Minjiang watershed[J]. Mountain Research, 2018, 36(1):91-97.
[25] Herrera G, Gutiérrez F, García-Davalillo J C, et al. Multi-sensor advanced DInSAR monitoring of very slow landslides:The Tena Valley case study (Central Spanish Pyrenees)[J]. Remote Sensing of Environment, 2013, 128:31-43.
doi: 10.1016/j.rse.2012.09.020 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571200380X
[26] 张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8):1595-1610.
[26] Zhang Q K, Ling S X, Li X N, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8):1595-1610.
[27] 周超. 集成时间序列InSAR技术的滑坡早期识别与预测研究[D]. 武汉: 中国地质大学, 2018.
[27] Zhou C. Landslide identification and prediction with the application of time series InSAR[D]. Wuhan: China University of Geosciences, 2018.
[1] WANG Ning, JIANG Decai, ZHENG Xiangxiang, ZHONG Chang. Assessing the susceptibility of slope geological hazards based on multi-source heterogeneous data: A case study of Longgang District, Shenzhen City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 122-129.
[2] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[3] XIAO Hui, LI Huitang, GU Yuehan, SHENG Qinghong. A quality-guided least squares phase unwrapping algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 25-33.
[4] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[5] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[6] YI Bangjin, HUANG Cheng, FU Tao, SUN Jixing, ZHU Baoquan, ZHONG Cheng. SBAS-InSAR-based detection of geological hazards in alpine gorge areas near the China-Myanmar border[J]. Remote Sensing for Natural Resources, 2023, 35(4): 186-191.
[7] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[8] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[9] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[10] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[11] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[12] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[13] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[14] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[15] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech