|
|
|
|
|
|
Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data |
JIANG Ruirui1,2,3( ), GAN Fuping1( ), GUO Yi1, YAN Bokun1 |
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 2. Chinese Academy of Geological Sciences, China University of Geosciences(Beijing), Beijing 100083, China 3. Chinese Academy of Geological Sciences, Beijing 100083, China |
|
|
Abstract Soil moisture is closely associated with global climate change, the carbon cycle, and the water cycle, as well as agricultural production and ecological conservation and restoration. The detection of soil moisture has shifted from ground survey to remote sensing detection, achieving global- and regional-scale survey and monitoring. Given differences in data spectrum segments, radiative transfer mechanisms, and inversion algorithms, it is necessary to comprehensively analyze the mechanisms, advantages, and limitations of algorithms, with the purpose of laying a foundation for accuracy and algorithm improvement. From the aspects of optical remote sensing, microwave remote sensing, and optic-microwave cooperation, this study systematically analyzed the features and challenges of the following inversion techniques: inversion based on the Ts-VI spatial and Ts-NSSR temporal characteristics of optical remote sensing data, inversion using passive and active microwave data, joint inversion using active and passive microwave data and remote sensing data, and optical-microwave cooperative inversion based on accuracy improvement and spatio-temporal transformation. At present, the joint inversion of soil moisture using multi-source remote sensing data faces the following challenges: ① The data suffer missing and spatio-temporal mismatching; ② Different data sources exhibit varying degrees of surface penetration; ③ The joint inversion model relies on empirical parameters and numerous auxiliary parameters. These challenges can be addressed with the improvement in the satellite monitoring network, the increase in the surface detection depths of data sources, the clarification of the physical mechanisms of joint inversion, and the establishment of spatio-temporal continuous datasets of auxiliary parameters.
|
Keywords
soil moisture
multi-source remote sensing
optical remote sensing
microwave remote sensing
joint inversion
|
|
Issue Date: 13 March 2024
|
|
|
[1] |
李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4):1180-1194.
doi: 10.11821/dlyj020200328
|
[1] |
Li M, Sun H Q, Su Z C. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 2021, 40(4):1180-1194.
doi: 10.11821/dlyj020200328
|
[2] |
Nocita M, Stevens A, Noon C, et al. Prediction of soil organic carbon for different levels of soil moisture using VIS-NIR spectroscopy[J]. Geoderma, 2013, 199:37-42.
doi: 10.1016/j.geoderma.2012.07.020
url: https://linkinghub.elsevier.com/retrieve/pii/S001670611200290X
|
[3] |
陈洪松, 邵明安. 黄土区坡地土壤水分运动与转化机理研究进展[J]. 水科学进展, 2003, 14(4):413-420.
|
[3] |
Chen H S, Shao M A. Review on hillslope soil water movement and transformation mechanism on the loess plateau[J]. Advances in Water Science, 2003, 14(4):413-420.
|
[4] |
王勇. 松嫩平原北部农作物土壤水分有效性模拟及干旱评估研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
|
[4] |
Wang Y. Simulation of crop soil water availability and drought assessment in the northen Songnen plain[D]. Harbin:Harbin Normal University, 2021.
|
[5] |
Wang C, Fu B, Zhang L, et al. Soil moisture-plant interactions:An ecohydrological review[J]. Journal of Soils and Sediments, 2019, 19(1):1-9.
doi: 10.1007/s11368-018-2167-0
|
[6] |
周宏. 干旱区包气带土壤水分运移能量关系及驱动力研究评述[J]. 生态学报, 2019, 39(18):6586-6597.
|
[6] |
Zhou H. Review of studies on the relationship between soil water movement and energy and their driving forces in the vadose zone of arid regions[J]. Acta Ecologica Sinica, 2019, 39(18):6586-6597.
|
[7] |
David Suits L, Sheahan T C, Sreedeep S, et al. Measuring soil electrical resistivity using a resistivity box and a resistivity probe[J]. Geotechnical Testing Journal, 2004, 27(4):11199.
|
[8] |
Topp G C, Zebchuk W D, Davis J L, et al. The measurement of soil water content using a portable tdr hand probe[J]. Canadian Journal of Soil Science, 1984, 64(3):313-321.
doi: 10.4141/cjss84-033
url: http://www.nrcresearchpress.com/doi/10.4141/cjss84-033
|
[9] |
Mittelbach H, Lehner I, Seneviratne S I. Comparison of four soil moisture sensor types under field conditions in Switzerland[J]. Journal of Hydrology, 2012, 430/431:39-49.
doi: 10.1016/j.jhydrol.2012.01.041
url: https://linkinghub.elsevier.com/retrieve/pii/S0022169412000844
|
[10] |
Li Z L, Leng P, Zhou C, et al. Soil moisture retrieval from remote sensing measurements:Current knowledge and directions for the future[J]. Earth-Science Reviews, 2021, 218:103673.
doi: 10.1016/j.earscirev.2021.103673
url: https://linkinghub.elsevier.com/retrieve/pii/S0012825221001744
|
[11] |
Lievens H, Reichle R H, Liu Q, et al. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates[J]. Geophysical Research Letters, 2017, 44(12):6145-6153.
doi: 10.1002/2017GL073904
pmid: 29657343
|
[12] |
Leng P, Li Z L, Liao Q Y, et al. Determination of all-sky surface soil moisture at fine spatial resolution synergistically using optical/thermal infrared and microwave measurements[J]. Journal of Hydrology, 2019, 579:124167.
doi: 10.1016/j.jhydrol.2019.124167
url: https://linkinghub.elsevier.com/retrieve/pii/S0022169419309023
|
[13] |
Das N N, Entekhabi D, Dunbar R S, et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product[J]. Remote Sensing of Environment, 2019, 233:111380.
doi: 10.1016/j.rse.2019.111380
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719303992
|
[14] |
Wang H, Magagi R, Goïta K, et al. Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 251:112100.
doi: 10.1016/j.rse.2020.112100
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425720304739
|
[15] |
王俊霞, 潘耀忠, 朱秀芳, 等. 土壤水分反演特征变量研究综述[J]. 土壤学报, 2019, 56(1):23-35.
|
[15] |
Wang J X, Pan Y Z, Zhu X F, et al. A review of researches on inversion of eigenvariance of soil water[J]. Acta Pedologica Sinica, 2019, 56(1):23-35.
|
[16] |
刘焕军, 张柏, 杨立, 等. 土壤光学遥感研究进展[J]. 土壤通报, 2007, 38(6):1196-1202.
|
[16] |
Liu H J, Zhang B, Yang L, et al. Review of soil optical remote sensing[J]. Chinese Journal of Soil Science, 2007, 38(6):1196-1202.
|
[17] |
Maltese A, Capodici F, Corbari C, et al. Critical analysis of the thermal inertia approach to map soil water content under sparse vegetation and changeable sky conditions[C]// Proceeding of SPIE 8531,Remote Sensing for Agriculture,Ecosystems,and Hydrology XIV, 2012, 8531:186-195.
|
[18] |
Petropoulos G P, Srivastava P K, Ferentinos K P, et al. Evaluating the capabilities of optical/TIR imaging sensing systems for quantifying soil water content[J]. Geocarto International, 2020, 35(5):494-511.
doi: 10.1080/10106049.2018.1520926
url: https://www.tandfonline.com/doi/full/10.1080/10106049.2018.1520926
|
[19] |
吴学睿, 金双根, 宋叶志, 等. GNSS-R/IR土壤水分遥感研究现状[J]. 大地测量与地球动力学, 2019, 39(12):1277-1282.
|
[19] |
Wu X R, Jin S G, Song Y Z, et al. Progress on soil moisture monitoring with GNSS-R/IR technique[J]. Journal of Geodesy and Geodynamics, 2019, 39(12):1277-1282.
|
[20] |
Moran M S, Jackson R D, Slater P N, et al. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output[J]. Remote Sensing of Environment, 1992, 41(2/3):169-184.
doi: 10.1016/0034-4257(92)90076-V
url: https://linkinghub.elsevier.com/retrieve/pii/003442579290076V
|
[21] |
孔婕, 李纯斌, 吴静. 草地土壤水分遥感反演方法的适用性[J]. 草业科学, 2020, 37(12):2463-2474.
|
[21] |
Kong J, Li C B, Wu J. Applicability of remote sensing inversion models for estimating regional soil moisture in Chinese grasslands[J]. Pratacultural Science, 2020, 37(12):2463-2474.
|
[22] |
Zhao W, Labed J, Zhang X, et al. Surface soil moisture estimation from SEVIRI data onboard MSG satellite[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium.Honolulu,HI,USA.IEEE, 2010:3865-3868.
|
[23] |
樊彦国, 韩志聪, 丁智慧, 等. 基于MODIS数据的土壤湿度反演——以东营市为例[J]. 山东农业科学, 2016, 48(2):133-137.
|
[23] |
Fan Y G, Han Z C, Ding Z H, et al. Inversion of soil moisture based on MODIS data—Taking Dongying City for example[J]. Shandong Agricultural Sciences, 2016, 48(2):133-137.
|
[24] |
焦俏, 王飞, 李锐, 等. ERS卫星反演数据在黄土高原近地表土壤水分中的应用研究[J]. 土壤学报, 2014, 51(6):1388-1397.
|
[24] |
Jiao Q, Wang F, Li R, et al. Application of inversion of European remote sensing satellites data to investigation of near-surface soil moisture in loess plateau[J]. Acta Pedologica Sinica, 2014, 51(6):1388-1397.
|
[25] |
Wang W, Huang D, Wang X G, et al. Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index[J]. Hydrology and Earth System Sciences, 2011, 15(5):1699-1712.
doi: 10.5194/hess-15-1699-2011
url: https://hess.copernicus.org/articles/15/1699/2011/
|
[26] |
Shafian S, Maas S J. Improvement of the trapezoid method using raw landsat image digital count data for soil moisture estimation in the Texas (USA) high Plains[J]. Sensors, 2015, 15(1):1925-1944.
doi: 10.3390/s150101925
pmid: 25602267
|
[27] |
Leng P, Li Z L, Duan S B, et al. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:40-51.
doi: 10.1016/j.isprsjprs.2017.07.013
url: https://linkinghub.elsevier.com/retrieve/pii/S0924271617302861
|
[28] |
Bidgoli R D, Koohbanani H, Keshavarzi A, et al. Measurement and zonation of soil surface moisture in arid and semi-arid regions using Landsat 8 images[J]. Arabian Journal of Geosciences, 2020, 13(17):826.
doi: 10.1007/s12517-020-05837-2
|
[29] |
Sanaz S. Estimation of soil moisture status in the Texas high plains using remote sensing[D]. Lubbock: Texas Tech University, 2014.
|
[30] |
Verstraeten W W, Veroustraete F, van der Sande C J, et al. Soil moisture retrieval using thermal inertia,determined with visible and thermal spaceborne data,validated for European forests[J]. Remote Sensing of Environment, 2006, 101(3):299-314.
doi: 10.1016/j.rse.2005.12.016
url: https://linkinghub.elsevier.com/retrieve/pii/S003442570600023X
|
[31] |
蔡庆空, 陶亮亮, 蒋瑞波, 等. 基于理论干湿边与改进TVDI的麦田土壤水分估算研究[J]. 农业机械学报, 2020, 51(7):202-209.
|
[31] |
Cai Q K, Tao L L, Jiang R B, et al. Soil moisture estimation of wheat field based on theoretical dry-wet edge and improved TVDI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7):202-209.
|
[32] |
Zhang D, Tang R, Zhao W, et al. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature[J]. Remote Sensing, 2014, 6(4):3170-3187.
doi: 10.3390/rs6043170
url: http://www.mdpi.com/2072-4292/6/4/3170
|
[33] |
Przeź D K, Zawadzki J. Modification of the land surface temperature-vegetation index triangle method for soil moisture condition estimation by using SYNOP reports[J]. Ecological Indicators, 2020, 119:106823.
doi: 10.1016/j.ecolind.2020.106823
url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X20307615
|
[34] |
刘子琪, 郑杰, 朱忠礼, 等. 遥感反演土壤水分指数的适用性研究[J]. 地理科学研究, 2022(3):395-406.
|
[34] |
Liu Z Q, Zheng J, Zhu Z L, et al. Applicability research of parameters in soil moisture inversion[J]. Geographical Science Research, 2022(3):395-406.
|
[35] |
高琪, 彭杰, 冯春晖, 等. 基于Landsat8数据的荒漠土壤水分遥感反演[J]. 水土保持通报, 2021, 41(1):125-131,151.
|
[35] |
Gao Q, Peng J, Feng C H, et al. A study on inversion for remote sensing of desert soil moisture based on Landsat8 data[J]. Bulletin of Soil and Water Conservation, 2021, 41(1):125-131,151.
|
[36] |
Wetzel P J, Atlas D, Woodward R H. Determining soil moisture from geosynchronous satellite infrared data:A feasibility study[J]. Journal of Climate and Applied Meteorology, 1984, 23(3):375-391.
doi: 10.1175/1520-0450(1984)023<0375:DSMFGS>2.0.CO;2
url: http://journals.ametsoc.org/doi/10.1175/1520-0450(1984)023<0375:DSMFGS>2.0.CO;2
|
[37] |
Zhao W, Li Z L, Wu H, et al. Determination of bare surface soil moisture from combined temporal evolution of land surface temperature and net surface shortwave radiation[J]. Hydrological Processes, 2013, 27(19):2825-2833.
doi: 10.1002/hyp.v27.19
url: https://onlinelibrary.wiley.com/toc/10991085/27/19
|
[38] |
Zhao W, Li Z L. Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces[J]. International Journal of Remote Sensing, 2013, 34(9/10):3314-3331.
doi: 10.1080/01431161.2012.716532
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2012.716532
|
[39] |
Leng P, Song X, Li Z L, et al. Bare surface soil moisture retrieval from the synergistic use of optical and thermal infrared data[J]. International Journal of Remote Sensing, 2014, 35(3):988-1003.
doi: 10.1080/01431161.2013.875237
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2013.875237
|
[40] |
Leng P, Song X, Duan S B, et al. Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network[J]. International Journal of Remote Sensing, 2016, 37(24):5902-5917.
doi: 10.1080/01431161.2016.1253896
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1253896
|
[41] |
Wang H, Magagi R, Goïta K, et al. Soil moisture retrieval over a site of intensive agricultural production using airborne radiometer data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 97:102287.
doi: 10.1016/j.jag.2020.102287
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243420309302
|
[42] |
Jackson T J, Le Vine D M, Swift C T, et al. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita’92[J]. Remote Sensing of Environment, 1995, 54(1):27-37.
doi: 10.1016/0034-4257(95)00084-E
url: https://linkinghub.elsevier.com/retrieve/pii/003442579500084E
|
[43] |
O’Neill P, Bindlish R, Chan S, et al. Algorithm theoretical basis document.Level 2 & 3 soil moisture (passive) data products[J]. 2018.
|
[44] |
Owe M, de Jeu R, Walker J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1643-1654.
doi: 10.1109/36.942542
url: http://ieeexplore.ieee.org/document/942542/
|
[45] |
覃湘栋, 庞治国, 江威, 等. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10):1728-1742.
doi: 10.12082/dqxxkx.2021.210104
|
[45] |
Qin X D, Pang Z G, Jiang W, et al. Progress and development trend of soil moisture microwave remote sensing retrieval method[J]. Journal of Geo-Information Science, 2021, 23(10):1728-1742.
|
[46] |
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research:Oceans, 1982, 87(C13):11229-11237.
|
[47] |
Wigneron J P, Kerr Y, Waldteufel P, et al. L-band microwave emission of the biosphere (L-MEB) model:Description and calibration against experimental data sets over crop fields[J]. Remote Sensing of Environment, 2007, 107(4):639-655.
doi: 10.1016/j.rse.2006.10.014
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706004238
|
[48] |
白瑜. 东北农田区被动微波遥感土壤水分产品验证研究[D]. 长春: 吉林大学, 2018.
|
[48] |
Bai Y. Evaluation of passive microwave remote sensing soil moisture products over an agricultural area in Northeast China[D]. Changchun: Jilin University, 2018.
|
[49] |
靳梦杰. 林下土壤水分微波遥感反演关键技术研究[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
|
[49] |
Jin M J. Key techniques for microwave remote sensing soil moisture retrieval under forest[D]. Harbin:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, 2019.
|
[50] |
Wigneron J P, Jackson T J, O’Neill P, et al. Modelling the passive microwave signature from land surfaces:A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment, 2017, 192:238-262.
doi: 10.1016/j.rse.2017.01.024
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717300366
|
[51] |
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research:Oceans, 1982, 87(C13):11229-11237.
|
[52] |
Kurum M. Quantifying scattering albedo in microwave emission of vegetated terrain[J]. Remote Sensing of Environment, 2013, 129:66-74.
doi: 10.1016/j.rse.2012.10.021
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712004099
|
[53] |
Lindau R. CSP-algorithm theoretical basis document (ATBD) WP 8317-soil moisture[J]. Initial Release, 2015,3.
|
[54] |
Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403.
doi: 10.1109/TGRS.2012.2184548
url: http://ieeexplore.ieee.org/document/6161633/
|
[55] |
Ulaby F T, Wilson E A. Microwave attenuation properties of vegetation canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(5):746-753.
doi: 10.1109/TGRS.1985.289393
url: http://ieeexplore.ieee.org/document/4072369/
|
[56] |
Allen C, Ulaby F. Modelling the polarization dependence of the attenuation in vegetation canopies[C]. Proceedings of the Proceedings of the IGARSS,F,1984.
|
[57] |
Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1697-1707.
doi: 10.1109/36.942548
url: http://ieeexplore.ieee.org/document/942548/
|
[58] |
Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research:Oceans, 1982, 87(C2):1301-1304.
|
[59] |
Escorihuela M J, Kerr Y H, de Rosnay P, et al. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):1978-1987.
doi: 10.1109/TGRS.2007.894935
url: http://ieeexplore.ieee.org/document/4261052/
|
[60] |
Mironov V, Kerr Y, Wigneron J P, et al. Temperature- and texture-dependent dielectric model for moist soils at 1.4 GHz[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):419-423.
doi: 10.1109/LGRS.2012.2207878
url: http://ieeexplore.ieee.org/document/6268319/
|
[61] |
Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):370-381.
doi: 10.1109/36.134086
url: http://ieeexplore.ieee.org/document/134086/
|
[62] |
戴玉玲. 基于双极化数据的草原地表土壤水分反演研究[D]. 徐州: 中国矿业大学, 2019.
|
[62] |
Dai Y L. Study on inversion of grassland soil moisture based on dual polarization data[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[63] |
Dubois P C, van Zyl J, Engman T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4):915-926.
doi: 10.1109/36.406677
url: http://ieeexplore.ieee.org/document/406677/
|
[64] |
Shi J, Wang J, Hsu A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1254-1266.
doi: 10.1109/36.628792
url: http://ieeexplore.ieee.org/document/628792/
|
[65] |
邓小东, 王宏全. 土壤水分微波遥感反演算法及应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3):289-302.
|
[65] |
Deng X D, Wang H Q. Recent advances on algorithms and applications of soil moisture retrieval from microwave remote sensing[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3):289-302.
|
[66] |
Oh Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):596-601.
doi: 10.1109/TGRS.2003.821065
url: http://ieeexplore.ieee.org/document/1273591/
|
[67] |
Stogryn A. Electromagnetic scattering from rough,finitely conducting surfaces[J]. Radio Science, 1967, 2(4):415-428.
doi: 10.1002/rds.1967.2.issue-4
url: https://agupubs.onlinelibrary.wiley.com/toc/1944799x/2/4
|
[68] |
Ulaby F, Moore R K, Fung A K. Microwave remote sensing:Active and passive,volumn 3:From theory to applications[M]. Norwood, MA: Artech House,1986.
|
[69] |
Rice S O. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 1951, 4(2/3):351-378.
doi: 10.1002/cpa.v4:2-3
url: https://onlinelibrary.wiley.com/toc/10970312/4/2-3
|
[70] |
Fung A K, Li Z, Chen K S. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):356-369.
doi: 10.1109/36.134085
url: http://ieeexplore.ieee.org/document/134085/
|
[71] |
Zhang X, Tang X, Gao X, et al. Soil moisture estimation based on the AIEM for bare agricultural area[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium.Waikoloa,HI,USA.IEEE, 2020:4723-4726.
|
[72] |
关韵桐. 基于SAR与光学数据的高原湿地土壤水分反演研究——以大山包湿地为例[D]. 昆明: 云南师范大学, 2019.
|
[72] |
Guan Y T. Inversion of soil moisture in plateau wetland based on SAR and optical data[D]. Kunming: Yunnan Normal University, 2019.
|
[73] |
Fung A K, Chen K S. An update on the IEM surface backscattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2):75-77.
doi: 10.1109/LGRS.2004.826564
url: http://ieeexplore.ieee.org/document/1291385/
|
[74] |
Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1):90-101.
doi: 10.1109/TGRS.2002.807587
url: https://ieeexplore.ieee.org/document/1183697/
|
[75] |
Kornelsen K C, Coulibaly P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications[J]. Journal of Hydrology, 2013, 476:460-489.
doi: 10.1016/j.jhydrol.2012.10.044
url: https://linkinghub.elsevier.com/retrieve/pii/S0022169412009444
|
[76] |
Han L, Wang C, Yu T, et al. High-precision soil moisture mapping based on multi-model coupling and background knowledge,over vegetated areas using Chinese GF-3 and GF-1 satellite data[J]. Remote Sensing, 2020, 12(13):2123.
doi: 10.3390/rs12132123
url: https://www.mdpi.com/2072-4292/12/13/2123
|
[77] |
Zribi M, Gorrab A, Baghdadi N, et al. Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):848-852.
doi: 10.1109/LGRS.2013.2279893
url: http://ieeexplore.ieee.org/document/6606863/
|
[78] |
Shen X, Mao K, Qin Q, et al. Bare surface soil moisture estimation using double-angle and dual-polarization L-band radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):3931-3942.
doi: 10.1109/TGRS.2012.2228209
url: http://ieeexplore.ieee.org/document/6471210/
|
[79] |
Zhang L, Meng Q, Yao S, et al. Soil moisture retrieval from the Chinese GF-3 satellite and optical data over agricultural fields[J]. Sensors, 2018, 18(8):2675.
doi: 10.3390/s18082675
url: http://www.mdpi.com/1424-8220/18/8/2675
|
[80] |
耿德源, 赵天杰, 施建成, 等. 地基雷达的微波面散射模型对比与土壤水分反演[J]. 遥感学报, 2021, 25(4):929-940.
|
[80] |
Geng D Y, Zhao T J, Shi J C, et al. Surface microwave scattering model evaluation and soil moisture retrieval based on ground-based radar data[J]. National Remote Sensing Bulletin, 2021, 25(4):929-940.
doi: 10.11834/jrs.20219305
url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20219305/
|
[81] |
O’Neill P E, Chauhan N S, Jackson T J. Use of active and passive microwave remote sensing for soil moisture estimation through corn[J]. International Journal of Remote Sensing, 1996, 17(10):1851-1865.
doi: 10.1080/01431169608948743
url: https://www.tandfonline.com/doi/full/10.1080/01431169608948743
|
[82] |
武胜利. 基于TRMM的主被动微波遥感结合反演土壤水分算法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2006.
|
[82] |
Wu S L. Study on combined active/passive microwave remote sensing approach for soil moisture retrieval with TRMM data[D]. Beijing: Chinese Academy of Sciences(Institute of Remote Sensing Applications), 2006.
|
[83] |
Santi E, Paloscia S, Pettinato S, et al. On the synergy of SMAP,AMSR2 and Sentinel-1 for retrieving soil moisture[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 65:114-123.
doi: 10.1016/j.jag.2017.10.010
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243417302295
|
[84] |
Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364.
doi: 10.1029/RS013i002p00357
url: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/RS013i002p00357
|
[85] |
Ulaby F T, Sarabandi K, McDonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7):1223-1253.
doi: 10.1080/01431169008955090
url: https://www.tandfonline.com/doi/full/10.1080/01431169008955090
|
[86] |
马腾, 韩玲, 刘全明. 考虑地表粗糙度改进水云模型反演西班牙农田地表土壤含水率[J]. 农业工程学报, 2019, 35(24):129-135.
|
[86] |
Ma T, Han L, Liu Q M. Inversion of surface soil moisture content of Spanish farmland using modified water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24):129-135.
|
[87] |
Chauhan N S, Miller S, Ardanuy P. Spaceborne soil moisture estimation at high resolution:A microwave-optical/IR synergistic approach[J]. International Journal of Remote Sensing, 2003, 24(22):4599-4622.
doi: 10.1080/0143116031000156837
url: https://www.tandfonline.com/doi/full/10.1080/0143116031000156837
|
[88] |
Merlin O, Al Bitar A, Walker J P, et al. A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors[J]. Remote Sensing of Environment, 2009, 113(10):2275-2284.
doi: 10.1016/j.rse.2009.06.012
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709001904
|
[89] |
Kim J, Hogue T S. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):446-460.
doi: 10.1109/TGRS.2011.2161318
url: http://ieeexplore.ieee.org/document/5982382/
|
[90] |
Liu S F, Liou Y A, Wang W J, et al. Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6):1260-1268.
doi: 10.1109/TGRS.2002.800277
url: http://ieeexplore.ieee.org/document/1020258/
|
[91] |
Moran M S, Peters-Lidard C D, Watts J M, et al. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models[J]. Canadian Journal of Remote Sensing, 2004, 30(5):805-826.
doi: 10.5589/m04-043
url: http://www.tandfonline.com/doi/abs/10.5589/m04-043
|
[92] |
Zhao W, Sánchez N, Lu H, et al. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression[J]. Journal of Hydrology, 2018, 563:1009-1024.
doi: 10.1016/j.jhydrol.2018.06.081
url: https://linkinghub.elsevier.com/retrieve/pii/S0022169418305031
|
[93] |
Zhan X, Miller S, Chauhan N, et al. Soil moisture visible/infrared radiometer suite algorithm theoretical basis document[J]. Lanham,Md, 2002.
|
[94] |
Malbéteau Y, Merlin O, Molero B, et al. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements:Application to SMOS and AMSR-E data in Southeastern Australia[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45:221-234.
doi: 10.1016/j.jag.2015.10.002
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243415300386
|
[95] |
Molero B, Merlin O, Malbéteau Y, et al. SMOS disaggregated soil moisture product at 1 km resolution:Processor overview and first validation results[J]. Remote Sensing of Environment, 2016, 180:361-376.
doi: 10.1016/j.rse.2016.02.045
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716300736
|
[96] |
凌自苇, 何龙斌, 曾辉. 三种Ts/VI指数在UCLA土壤湿度降尺度法中的效果评价[J]. 应用生态学报, 2014, 25(2):545-552.
|
[96] |
Ling Z W, He L B, Zeng H. Evaluating the performance of the UCLA method for spatially downscaling soil moisture products using three Ts/VI indices[J]. Chinese Journal of Applied Ecology, 2014, 25(2):545-552.
|
[97] |
周壮, 赵少杰, 蒋玲梅. 被动微波遥感土壤水分产品降尺度方法研究综述[J]. 北京师范大学学报(自然科学版), 2016, 52(4):479-485.
|
[97] |
Zhou Z, Zhao S J, Jiang L M. Downscaling methods of passive microwave remote sensing of soil moisture[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4):479-485.
|
[98] |
Sánchez-Ruiz S, Piles M, Sánchez N, et al. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates[J]. Journal of Hydrology, 2014, 516:273-283.
doi: 10.1016/j.jhydrol.2013.12.047
url: https://linkinghub.elsevier.com/retrieve/pii/S002216941300944X
|
[99] |
Ojha N, Merlin O, Suere C, et al. Extending the spatio-temporal applicability of DISPATCH soil moisture downscaling algorithm:A study case using SMAP,MODIS and sentinel-3 data[J]. Frontiers in Environmental Science, 2021, 9:555216.
doi: 10.3389/fenvs.2021.555216
url: https://www.frontiersin.org/articles/10.3389/fenvs.2021.555216/full
|
[100] |
宋承运, 王艳丽. 风云三号土壤水分遥感产品降尺度方法对比分析[J]. 黑龙江工程学院学报, 2021, 35(3):13-16,32.
|
[100] |
Song C Y, Wang Y L. A comparison study of FY-3B soil moisture downscaling methods[J]. Journal of Heilongjiang Institute of Technology, 2021, 35(3):13-16,32.
|
[101] |
Xu W, Zhang Z, Long Z, et al. Downscaling SMAP soil moisture products with convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:4051-4062.
doi: 10.1109/JSTARS.2021.3069774
url: https://ieeexplore.ieee.org/document/9390292/
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|