Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 32-44     DOI: 10.6046/zrzyyg.2023401
|
Remote sensing-based dynamic monitoring and ecological restoration effect assessment of abandoned open-pit mines in the Yangtze River economic belt within Hubei Province
SUN Yaqin1,2,3(), DI Baogang4, XING Yu1, AN Na1(), ZHANG Xian1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Nature Resources, Beijing 100083, China
3. Technology Innovation Center for Geohazards Identification and Monitoring with Earth Observation System, Ministry of Natural Resources of the People’s Republic of China, Beijing 100083, China
4. China Siwei Surveying and Mapping Technology Co., Ltd., Beijing 100083, China
Download: PDF(10070 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Yangtze River economic belt (YREB), spanning the east, middle, and west regions of China, serves as a pioneering demonstration belt for the construction of ecological civilization. Hubei Province, a member of the YREB, holds abundant mineral resources. Its long-term exploitation of mineral resources has caused ecosystem damage and social stability disruption, necessitating ecological restoration of abandoned open-pit mines. However, few studies concern the systematic tracking, monitoring, and analysis of the ecological restoration of abandoned open-pit mines in the YREB within Hubei Province. Based on the remote sensing data from the domestic high-resolution satellite from 2017 to 2022, and utilizing human-computer interaction interpretation, this study monitored the distributions and ecological restoration of abandoned open-pit mines within 10 km on both sides of the mainstems and major tributaries (Hanjiang River and Qingjiang River) in the YREB within Hubei Province. The results indicate that by the end of 2017, 537 patches of abandoned open-pit mines had been identified in the study area, involving 283 mines with a total area of 2 225.19 hm2. The monitoring results of dynamic changes from 2018 to 2022 show that the ecological restoration and treatment area of abandoned open-pit mines increased from 291.01 hm2 in 2018 to 1 741.19 hm2 in 2022, manifesting a continuously rising treatment rate, suggesting overall improved ecological restoration and treatment results. Using the remote sensing ecological index (RSEI) values from 2017 to 2022, this study assessed the ecological restoration effects of abandoned open-pit mines. The assessment results reveal that the average RSEI value for the patches increased from 0.397 7 in 2017 to 0.423 9 in 2022, with a growth rate of 6.59 %, suggesting significantly improved ecological conditions and restoration effects. Overall, the monitoring and assessment results of the dynamic changes in ecological restoration of abandoned open-pit mines in the study area provide valuable data and methodological insights for monitoring abandoned open-pit mines in Hubei Province and other regions in China, highlighting the significance of this study.

Keywords Yangtze River economic belt (YREB)      abandoned open-pit mine      ecological restoration      remote sensing ecological index (RSEI)      ecological restoration effect assessment     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yaqin SUN
Baogang DI
Yu XING
Na AN
Xian ZHANG
Cite this article:   
Yaqin SUN,Baogang DI,Yu XING, et al. Remote sensing-based dynamic monitoring and ecological restoration effect assessment of abandoned open-pit mines in the Yangtze River economic belt within Hubei Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 32-44.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023401     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/32
Fig.1  Sketch map of the distribution of the study area
时相 影像类型 空间分
辨率/m
用途
2017年7—11月 GF-1/GF-2/ZY-3 0.8~2.0 本底调查
2018年7—11月 GF-1/GF-2/GF-6/ZY-3 0.8~2.0 变化调查
2019年7—11月 GF-1/GF-2/GF-6/ZY-3 0.8~2.0 变化调查
2020年7—11月 GF-1/GF-2/ZY-3/BJ-2 0.8~2.0 变化调查
2021年7—11月 GF-1/GF-2/ZY-1/
GF-7/BJ-2
0.65~2.0 变化调查
2022年7—11月 GF-1/GF-2/GF-6/BJ-2 0.8~2.0 变化调查
Tab.1  Remote sensing data used for each year
Fig.2  Main technical flow chart of the article
Fig.3  Examples of remote sensing images before and after treatment of abandoned open-pit mines in the study area
Fig.4  Distribution map of abandoned open-pit mine in the study area
市级行政区 矿山数量/座 图斑数量/处 图斑面积/hm2
武汉市 10 17 100.76
黄石市 59 159 838.17
十堰市 2 2 3.78
宜昌市 34 55 175.26
襄阳市 10 30 95.96
鄂州市 9 21 43.52
荆门市 23 44 122.82
孝感市 18 41 154.10
荆州市 9 15 38.23
黄冈市 21 41 241.47
咸宁市 5 16 64.75
恩施土家族
苗族自治州
71 78 265.88
仙桃市 4 5 12.08
潜江市 4 7 33.15
天门市 4 6 35.26
总计 283 537 2 225.19
Tab.2  Statistics on the distribution of abandoned open-pit mines in the study area
地级市 采场 中转
场地
固体
废弃物
矿山
建筑
小计
武汉市 71.28 22.78 6.70 100.76
黄石市 441.72 284.13 91.14 21.18 838.17
十堰市 3.78 3.78
宜昌市 130.55 44.18 0.53 175.26
襄阳市 88.66 7.30 95.96
鄂州市 29.70 11.59 2.23 43.52
荆门市 92.09 26.67 2.98 1.08 122.82
孝感市 104.61 44.38 5.11 154.10
荆州市 21.25 16.98 38.23
黄冈市 207.45 33.17 0.85 241.47
咸宁市 45.25 14.52 4.20 0.78 64.75
恩施土家族
苗族自治州
248.07 17.81 265.88
仙桃市 1.37 10.71 12.08
潜江市 7.98 25.17 33.15
天门市 10.27 24.99 35.26
总计 1 504.03 584.38 113.74 23.04 2 225.19
Tab.3  Area statistics of land occupation types of abandoned open-pit mines in the study area(hm2)
Fig.5  Remote sensing monitoring map of ecological restoration and treatment of abandoned open-pit mines in the study area, 2018—2022
Fig.6  Area and rate of ecological restoration and treatment of abandoned open-pit mines in the study area, 2018—2022
Fig.7  Statistics on growth area and growth rate of ecological restoration and treatment of abandoned open-pit mines in the study area, 2018—2022
Fig.8  Area statistical of land occupation types of ecological restoration and treatment of abandoned open-pit mine in the study area, 2018—2022
Fig.9  Statistical map of ecological restoration treatment rate of land occupation types of abandoned open-pit mine in the study area, 2018—2022
Fig.10  Area statistical map of land types after ecological restoration and treatment of abandoned open-pit mines in the study area, 2018—2022
Fig.11  Area statistics of ecological restoration and treatment of abandoned open-pit mines in each prefecture-level city (state) in the study area, 2018—2022
Fig.12  Ecological restoration and treatment rate of abandoned open-pit mines in each prefecture-level city (state) in the study area, 2018—2022
Fig.13  Area of land types before and after ecological restoration and teatment of abandoned open-pit mines in the study area in 2022
Fig.14  Distribution map of RSEI in the study area, 2017—2022
Fig.15  RSEI for the study area, 2017—2022
Fig.16  RSEIfor the abandoned mine patches, 2017—2022
Fig.17  Distribution map of RSEI for the abandoned mine patches, 2017—2022
Fig.18  RSEIarea statistics of each grade in the study area, 2017-2022
Fig.19  RSEIarea statistics of each grade of abandoned open-pit mine quarries, 2017—2022
[1] 张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21):7921-7930.
[1] Zhang J D, Xi F R. Study on ecological restoration of abandoned mines in China[J]. Acta Ecologica Sinica, 2020, 40(21):7921-7930.
[2] 关钊, 谢红彬, 罗琳, 等. 近30年中国矿业废弃地生态修复及再利用研究热点及趋势分析[J]. 中国矿业, 2022, 31(5):18-26.
[2] Guan Z, Xie H B, Luo L, et al. Analysis of research hotspots and trends in ecological restoration and reuse of China’s mining wastelands in the past 30 years[J]. China Mining Magazine, 2022, 31(5):18-26.
[3] Chaussard E, Kerosky S. Characterization of black sand mining activities and their environmental impacts in the Philippines using remote sensing[J]. Remote Sensing, 2016, 8(2):100.
[4] Ranjan A K, Sahoo D, Gorai A K. Quantitative assessment of landscape transformation due to coal mining activity using earth observation satellite data in Jharsuguda coal mining region,Odisha,India[J]. Environment,Development and Sustainability, 2021, 23(3):4484-4499.
[5] Kayet N, Pathak K, Singh C P, et al. Vegetation health conditions assessment and mapping using AVIRIS-NG hyperspectral and field spectroscopy data for-environmental impact assessment in coal mining sites[J]. Ecotoxicology and Environmental Safety, 2022,239:113650.
[6] Li Q, Li F, Guo J, et al. The synergistic effect of topographic factors and vegetation indices on the underground coal mine utilizing unmanned aerial vehicle remote sensing[J]. International Journal of Environmental Research and Public Health, 2023, 20(4):3759.
[7] Xu Y, Guo L, Li J, et al. Automatically identifying the vegetation destruction and restoration of various open-pit mines utilizing remotely sensed images:Auto-VDR[J]. Journal of Cleaner Production, 2023,414:137490.
[8] Li H, Xu F, Li Q. Remote sensing monitoring of land damage and restoration in rare earth mining areas in 6 counties in southern Jiangxi based on multisource sequential images[J]. Journal of Environmental Management, 2020,267:110653.
[9] Vorovencii I. Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery:A case study of Jiu Valley,Romania[J]. Environmental Monitoring and Assessment, 2021, 193(1):30.
doi: 10.1007/s10661-020-08834-w pmid: 33398530
[10] Xiao W, Chen W, Deng X. Coupling and coordination of coal mining intensity and social-ecological resilience in China[J]. Ecological Indicators, 2021,131:108167.
[11] Yuan D, Hu Z, Yang K, et al. Assessment of the ecological impacts of coal mining and restoration in alpine areas:A case study of the Muli Coalfield on the Qinghai-Tibet Plateau[J]. IEEE Access, 2021,9:162919-162934.
[12] Ogunro O T, Owolabi A O. Assessment of the sustainability of landcovers due to artisanal mining in Jos Area,Nigeria[J]. Environmental Science and Pollution Research International, 2023, 30(13):36502-36520.
[13] Cetin M, Pekkan O I, Ozturk G B, et al. Determination of the impacts of mining activities on land cover and soil organic carbon:Altintepe gold mine case,Turkey[J]. Water,Air,& Soil Pollution, 2023, 234(4):272.
[14] Ruppen D, Runnalls J, Tshimanga R M, et al. Optical remote sen-sing of large-scale water pollution in Angola and DR Congo caused by the Catoca Mine tailings spill[J]. International Journal of Applied Earth Observation and Geoinformation, 2023,118:103237.
[15] 张浙, 卢然, 伍思扬, 等. 长江经济带矿山土壤重金属污染及健康风险评价[J]. 环境科学, 2022, 43(7):3763-3772.
[15] Zhang Z, Lu R, Wu S Y, et al. Heavy metal pollution and health risk assessment of mine soil in Yangtze River economic belt[J]. Environmental Science, 2022, 43(7):3763-3772.
[16] KopeĆ A, Trybała P, Głᶏbicki D, et al. Application of remote sen-sing,GIS and machine learning with geographically weighted regression in assessing the impact of hard coal mining on the natural environment[J]. Sustainability, 2020, 12(22):9338.
[17] Liu H, Jiang Y, Misa R, et al. Ecological environment changes of mining areas around Nansi Lake with remote sensing monitoring[J]. Environmental Science and Pollution Research International, 2021, 28(32):44152-44164.
[18] Wang Y, Zhang D, Wang Y. Evaluation analysis of forest ecological security in 11 provinces (cities) of the Yangtze River economic belt[J]. Sustainability, 2021, 13(9):4845.
[19] 方传棣. 长江经济带矿产资源开发-经济-环境耦合协调发展研究[D]. 武汉: 中国地质大学, 2019.
[19] Fang C D. Study on the coordinated development of mineral resources development-economy-environment coupling in the Yangtze River Economic Belt[D]. Wuhan: China University of Geosciences, 2019.
[20] 李海东, 高媛赟, 燕守广. 生态保护红线区废弃矿山生态修复监管[J]. 生态与农村环境学报, 2018, 34(8):673-677.
[20] Li H D, Gao Y Y, Yan S G. Supervisory countermeasures of ecolo-gical restoration of abandoned mine areas in the ecological conservation redline area[J]. Journal of Ecology and Rural Environment, 2018, 34(8):673-677.
[21] 乔雪园, 吴海斌, 王殿常, 等. 长江经济带矿山生态治理的实施成效、问题与对策[J]. 中国矿业, 2022, 31(8):36-43.
[21] Qiao X Y, Wu H B, Wang D C, et al., Achievements,problems and suggestions of mine ecological governance in the Yangtze River Economic Belt[J]. China Mining Magazine, 2022, 31(8):36-43.
[22] 殷亚秋, 杨金中, 汪洁, 等. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2):170-176.doi:10.6046/gtzyyg.2020.02.22.
[22] Yin Y Q, Yang J Z, Wang J, et al. Remote sensing survey of land occupied and damaged by abandoned mines along the Yangtze River Economic Belt and researchron ecological remediation countermeasures[J]. Remote Sensing for Natural Resources, 2020, 32(2):170-176.doi:10.6046/gtzyyg.2020.02.22.
[23] 孙娅琴, 邸宝刚, 安娜, 等. 长江经济带废弃露天矿山生态修复典型模式遥感监测:以湖北省为例[J]. 中国矿业, 2022, 31(12):50-57,63.
[23] Sun Y Q, Di B G, An N, et al. Remote sensing monitoring of typical ecological restoration models of abandoned open-pit mines in the Yangtze River Economic Belt:A case study of Hubei Province[J]. China Mining Magazine, 2022, 31(12):50-57,63.
[24] Du S, Li W, Li J, et al. Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach[J]. International Journal of Mining,Reclamation and Environment, 2022, 36(7):512-535.
[25] 唐晖, 邹娟, 尹向红, 等. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3):302-309.doi:10.6046/zrzyyg.2023075.
[25] Tang H, Zou J, Yin X H, et al. River and lake sand mining in the Dongting Lake area:Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3):302-309.doi:10.6046/zrzyyg.2023075.
[26] 赵玉灵, 杨金中, 孙娅琴, 等. 油气矿山越界开采遥感监测方法探索[J]. 自然资源遥感, 2022, 34(2):30-36.doi:10.6046/zrzyyg.2021140.
[26] Zhao Y L, Yang J Z, Sun Y Q, et al. A remote sensing method for judging the cross-border mining of oil and gas mines[J]. Remote Sensing for Natural Resources, 2022, 34(2):30-36.doi:10.6046/zrzyyg.2021140.
[27] 高俊华, 邹联学, 龙欢, 等. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021078.
[27] Gao J H, Zou l X, Long H, et al. Analysis on characteristics of mine geological environment and ecologicarestoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021078
[28] Wang W, Liu R, Gan F, et al. Monitoring and evaluating restoration vegetation status in mine region using remote sensing data:Case study in Inner Mongolia,China[J]. Remote Sensing, 2021, 13(7):1350.
[29] Liu Y, Heng W, Yue H. Quantifying the coal mining impact on the ecological environment of Gobi open-pit mines[J]. Science of the Total Environment, 2023,883:163723.
[30] Messer L C, Jagai J S, Rappazzo K M, et al. Construction of an environmental quality index for public health research[J]. Environmental Health:A Global Access Science Source, 2014, 13(1):39.
[31] Liao X, Li W, Hou J. Application of GIS based ecological vulnerability evaluation in environmental impact assessment of master plan of coal mining area[J]. Procedia Environmental Sciences, 2013,18:271-276.
[32] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
[32] Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.
[33] Dai X, Li W, Liu Z, et al. Effects of mining on urban environmental change:A case study of Panzhihua[J]. Remote Sensing, 2022, 14(23):6004.
[34] Tang H, Fang J, Xie R, et al. Impact of land cover change on a typical mining region and its ecological environment quality evaluation using remote sensing based ecological index (RSEI)[J]. Sustainability, 2022, 14(19):12694.
[35] Shan Y, Dai X, Li W, et al. Detecting spatial-temporal changes of urban environment quality by remote sensing-based ecological indices:A case study in Panzhihua City,Sichuan Province,China[J]. Remote Sensing, 2022, 14(17):4137.
[36] Wei Y, Qian J, Fan W, et al. Dynamic monitoring of ecological environment quality in Lijiang River Basin based on RSEI[J]. Science of Soil and Water Conservation, 2021, 19(1):122-131.
[37] 梅安新. 遥感导论[M]. 北京: 高等教育出版社, 2001.
[37] Mei A X. An introduction to remote sensing[M]. Beijing: Higher Education Press, 2001.
[38] 徐涵秋, 邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1):1-7.
doi: 10.11873/j.issn.1004-0323.2022.1.0001
[38] Xu H Q, Deng W H. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 2022, 37(1):1-7.
[1] WANG Yuanyuan, ZANG Xiechao, XU Weiwei, YANG Changxia, JIN Yang, REN Jinghua, HE Xinxing. SRP model-based assessment and analysis of ecological vulnerability in the Yangtze River economic belt within Jiangsu Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 170-182.
[2] LI Ting, YE Lijuan, YANG Junquan, ZHANG Jing, ZHANG Yun, LIU Huan. Remote sensing survey of geological environments in mines in west-central Inner Mongolia[J]. Remote Sensing for Natural Resources, 2025, 37(3): 45-53.
[3] LIN Xinyuan, CHENG Yangjian, XIE Wei, LI Chuanqing, NIE Wen. Exploring the ecological effects of land use changes in mining areas under different mining modes based on the Google Earth Engine[J]. Remote Sensing for Natural Resources, 2025, 37(3): 54-64.
[4] ZHANG Jing, HU Xiaojia, WANG Wei, CHEN Donglei, HUANG Xuhong, YANG Junquan. Comprehensive assessment and analysis of natural resources and ecological conditions in the Zhangbei area[J]. Remote Sensing for Natural Resources, 2025, 37(2): 164-172.
[5] ZHAO Yuling, YANG Jinzhong, SUN Weidong, YU Hao, XING Yu, CHEN Dong, MA Xinying, WANG Tixin, WANG Cong. Evaluation and analysis of geological environment of mines in the Ili Valley and countermeasures for ecological restoration and management[J]. Remote Sensing for Natural Resources, 2024, 36(4): 23-30.
[6] XING Yu, WANG Jingya, YANG Jinzhong, CHEN Dong, DU Xiaomin, GUO Jingkai, SONG Licong. Distributions and existing problems of mining land of abandoned open-pit mines in China[J]. Remote Sensing for Natural Resources, 2024, 36(2): 21-26.
[7] HUANG Zhuo, SUN Jianguo, FENG Chunyue, XU Peng, YANG Hao, HOU Wenbing. ES change-based ecological restoration zoning for the Hexi region[J]. Remote Sensing for Natural Resources, 2023, 35(4): 236-243.
[8] GAO Junhua, ZOU Lianxue, LONG Huan, CHU Shuitao. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3): 240-248.
[9] YANG Xianhua, WEI Peng, LYU Jun, HAN Lei, SHI Haolin, LIU Zhi. Application of mining collapse recognition technology based on multi-source remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(2): 162-167.
[10] YIN Yaqiu, JIANG Cunhao, JU Xing, CHEN Keyang, WANG Jie, XING Yu. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2): 194-202.
[11] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[12] CHEN Shulin, BI Yinli. Application of remote sensing technology to microbial reclamation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 16-23.
[13] LI Na, YANG Feng-Jie, LV Jian-Sheng. THE APPLICATION OF PLANT SPECTRAL EFFECTS TO THE
ESTIMATION OF MINE TAILING ECOLOGICAL RESTORATION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 75-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech