Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 236-243     DOI: 10.6046/zrzyyg.2022279
|
ES change-based ecological restoration zoning for the Hexi region
HUANG Zhuo1,2,3(), SUN Jianguo1,2,3(), FENG Chunyue1,2,3, XU Peng4, YANG Hao1,2,3, HOU Wenbing1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
4. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
Download: PDF(2758 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Ecological restoration zoning is a prerequisite for effective ecological restoration, and currently, the most commonly used zoning method is based on ecosystem services (ES). Most of the previous studies merely focus on the current ES status but ignore its changes, thus failing to reflect the potential and direction of ecological restoration. This study proposed a two-level zoning method for ecological restoration based on ES changes and applied this method to the Hexi region, Gansu Province. First, through Landsat image classification based on the Google Earth Engine (GEE) platform, this study obtained two periods (2005 and 2020) of land use data and calculated the ES sub-value and total value of the two periods of data using the equivalent factor method. Then, this study constructed the level-1 ecological restoration areas (priority restoration area PrR, important restoration area ImR, potential restoration area PoR, important protection area ImP, and priority protection area PrP) through the clustering and outlier analyses of the total ES value changes. Finally, the level-2 ecological restoration zones were determined based on the combined characteristics of changes in the values ES subitems. The results show that: ① Various level-1 areas, i.e., the PrR, ImR, PoR, ImP, and PrP areas account for 0.9%, 7.2%, 78.0%, 13.0%, and 0.9%, respectively. Most of the PoR areas are distributed in the Gobi desert of Hexi region, the PrR and PrP areas are sporadically distributed in the transition zone from the Qilian Mountains to the piedmont grassland, the ImR and ImP zones are mostly distributed in the Qilian Mountains, corridor plains, and mountains in the north. There exit greater potential for the restoration of the ImR areas and the protection of the ImP areas but limited potential for ecological restoration. Furthermore, there is a more urgent need for protection than for restoration; ② The level-2 areas can be classified into 10 categories of restoration areas and six categories of protection areas. The level-2 areas of the ImR and ImP areas are primarily determined based on the synergistic changes in sub-services. Both ecological restoration and protection measures for the Hexi region should focus on the comprehensive enhancement of ES.

Keywords ES      change      clustering and outlier analysis      ecological restoration zoning      Hexi region     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhuo HUANG
Jianguo SUN
Chunyue FENG
Peng XU
Hao YANG
Wenbing HOU
Cite this article:   
Zhuo HUANG,Jianguo SUN,Chunyue FENG, et al. ES change-based ecological restoration zoning for the Hexi region[J]. Remote Sensing for Natural Resources, 2023, 35(4): 236-243.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022279     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/236
Fig.1  Overview map of the study area
一级分区 全称 聚类类别
PrR 优先修复区 LH
ImR 重要修复区 LL
ImP 重要保护区 HH
PrP 优先保护区 HL
PoR 潜在修复区 不显著区
Tab.1  Ecological restoration level-1 zones
Fig.2  Land use classification map for 2005 and 2020
Fig.3  Spatial distribution of ES total value and sub-value changes
Fig.4  Ecological restoration level-1 zones
Fig.5  Area percentage map of ecological restoration level-2 zones
[1] 欧阳志云. 我国生态系统面临的问题与对策[J]. 中国国情国力, 2017(3):6-10.
[1] Ouyang Z Y. Problems and countermeasures faced by ecosystems in China[J]. China National Conditions and Strength, 2017(3):6-10.
[2] 曹宇, 王嘉怡, 李国煜. 国土空间生态修复:概念思辨与理论认知[J]. 中国土地科学, 2019, 33(7):1-10.
[2] Cao Y, Wang J Y, Li G Y. Ecological restoration for territorial space:Basic concepts and foundations[J]. China Land Science, 2019, 33(7):1-10.
[3] 管英杰, 刘俊国, 崔文惠, 等. 中国生态修复研究进展态势分析[J]. 生态学报, 2022, 42(12):1-11.
[3] Guan Y J, Liu J G, Cui W H, et al. Progress and future direction of ecological restoration research in China[J]. Acta Ecologica Sinica, 2022, 42(12):1-11.
[4] 李淑娟, 郑鑫, 隋玉正. 国内外生态修复效果评价研究进展[J]. 生态学报, 2021, 41(10):4240-4249.
[4] Li S J, Zheng X, Sui Y Z. Research progress in the evaluation of ecological restoration effects at home and abroad[J]. Acta Ecologica Sinica, 2021, 41(10):4240-4249.
[5] 刘俊国, 崔文惠, 田展, 等. 渐进式生态修复理论[J]. 科学通报, 2021, 66(9):1014-1025.
[5] Liu J G, Cui W H, Tian Z, et al. Theory of stepwise ecological restoration[J]. Chinese Science Bulletin, 2021, 66(9):1014-1025.
[6] 陈新闯, 李小倩, 吕一河, 等. 区域尺度生态修复空间辨识研究进展[J]. 生态学报, 2019, 39(23):8717-8724.
[6] Chen X C, Li X Q, Lyu Y H, et al. Review of spatial identification of ecological restoration[J]. Acta Ecologica Sinica, 2019, 39(23):8717-8724.
[7] 陈新闯, 李小倩, 吕一河, 等. 生态空间区划体系的理论内涵及关键技术研究[J]. 生态学报, 2022, 42(3):843-850.
[7] Chen X C, Li X Q, Lyu Y H, et al. Theoretical and technical discussion on the system of ecological space zoning[J]. Acta Ecologica Sinica, 2022, 42(3):843-850.
[8] 宋伟, 韩赜, 刘琳. 山水林田湖草生态问题系统诊断与保护修复综合分区研究——以陕西省为例[J]. 生态学报, 2019, 39(23):8975-8989.
[8] Song W, Han Z, Liu L. Systematic diagnosis of ecological problems and comprehensive zoning of ecological conservation and restoration for an integrated ecosystem of mountains-rivers-forests-farmlands-lakes-grasslands in Shaanxi Province[J]. Acta Ecologica Sinica, 2019, 39(23):8975-8989.
[9] 马世发, 劳春华, 江海燕. 基于生态安全格局理论的国土空间生态修复分区模拟——以粤港澳大湾区为例[J]. 生态学报, 2021, 41(9):3441-3448.
[9] Ma S F, Lao C H, Jiang H Y. Ecological restoration zoning of territorial space based on the pattern simulation of eco-security scenario:A case study of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Ecologica Sinica, 2021, 41(9):3441-3448.
[10] 欧阳志云, 王如松, 赵景柱. 生态系统服务功能及其生态经济价值评价[J]. 应用生态学报, 1999, 10(5):635-640.
[10] Ouyang Z Y, Wang R S, Zhao J Z. Ecosystem services and their economic valuation[j],Chinese Journal of Applied Ecology, 1999, 10(5):635-640.
[11] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究[J]. 生态学报, 1999, 19(5):607-613.
[11] Ouyang Z Y, Wang X K, Miao H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values[J], Acta Ecologica Sinica, 1999, 19(5):607-613.
[12] 岳文泽, 侯丽, 夏皓轩, 等. 基于生态系统服务供需平衡的宁夏固原生态修复分区与优化策略[J]. 应用生态学报, 2022, 33(1):149-158.
doi: 10.13287/j.1001-9332.202112.024
[12] Yue W Z, Hou L, Xia H X, et al. Territorially ecological restoration zoning and optimization strategy in Guyuan City of Ningxia,China:Based on the balance of ecosystem service supply and demand[J]. Chinese Journal of Applied Ecology, 2022, 33(1):149-158.
[13] 刘春芳, 李鹏杰, 刘立程, 等. 西北生态脆弱区省域国土空间生态修复分区[J]. 农业工程学报, 2020, 36(17):254-263.
[13] Liu C F, Li P J, Liu L C, et al. Ecological restoration zoning of provincial territorial space in the ecologically fragile areas of Northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17):254-263.
[14] Comín F A, Miranda B, Sorando R, et al. Prioritizing sites for ecological restoration based on ecosystem services[J]. Journal of Applied Ecology, 2018, 55(3):1155-1163.
doi: 10.1111/jpe.2018.55.issue-3 url: https://besjournals.onlinelibrary.wiley.com/toc/13652664/55/3
[15] 倪庆琳, 侯湖平, 丁忠义, 等. 基于生态安全格局识别的国土空间生态修复分区——以徐州市贾汪区为例[J]. 自然资源学报, 2020, 35(1):204-216.
doi: 10.31497/zrzyxb.20200117
[15] Ni Q L, Hou H P, Ding Z Y, et al. Ecological remediation zoning of territory based on the ecological security pattern recognition:Taking Jiawang district of Xuzhou City as an example[J]. Journal of Natural Resources, 2020, 35(1):204-216.
doi: 10.31497/zrzyxb.20200117 url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20200117
[16] 丹宇卓, 彭建, 张子墨, 等. 基于“退化压力-供给状态-修复潜力”框架的国土空间生态修复分区——以珠江三角洲为例[J]. 生态学报, 2020, 40(23):8451-8460.
[16] Dan Y Z, Peng J, Zhang Z M, et al. Territorially ecological restoration zoning based on the framework of degradation pressure,supply state and restoration potential:A case study in the Pearl River Delta region[J] Acta Ecologica Sinica, 2020, 40(23):8451-8460.
[17] 付梦娣, 唐文家, 刘伟玮, 等. 基于生态系统服务视角的生态风险评估及生态修复空间辨识——以长江源区为例[J]. 生态学报, 2021, 41(10):3846-3855.
[17] Fu M D, Tang W J, Liu W W, et al. Ecological risk assessment and spatial identification of ecological restoration from the ecosystem service perspective:A case study in source region of Yangtze River[J]. Acta Ecologica Sinica, 2021, 41(10):3846-3855.
[18] 张建永, 李扬, 赵文智, 等. 河西走廊生态格局演变跟踪分析[J]. 水资源保护, 2015, 31(3):5-10.
[18] Zhang J Y, Li Y, Zhao W Z, et al. Tracking analysis on changes of ecological patterns in Hexi Corridor Region[J]. Water Resources Protection, 2015, 31(3):5-10.
[19] 谢丽丽. 河西走廊生态保护修复现状及优化路径[J]. 发展, 2021(7):68-69.
[19] Xie L L. Status quo and optimization path of ecological protection and restoration of Hexi Corridor[J]. Developing, 2021(7):68-69.
[20] Ge Y, Hu S, Ren Z, et al. Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018[J]. Remote Sensing of Environment, 2019, 232:111285.
doi: 10.1016/j.rse.2019.111285 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719303049
[21] Wohlfart C, Mack B, Liu G, et al. Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series:Exemplary analysis in mining,agriculture,forest,and urban areas[J]. Applied Geography, 2017, 85:73-88.
doi: 10.1016/j.apgeog.2017.06.004 url: https://linkinghub.elsevier.com/retrieve/pii/S014362281630813X
[22] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8):1243-1254.
[22] Xie G D, Zhang C X, Zhang L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8):1243-1254.
doi: 10.11849/zrzyxb.2015.08.001
[23] Robert C, Ralph D, Rudolf D G, et al. The value of the world’s ecosystem services and natural capital[J]. Nature:International Weekly Journal of Science, 1997, 387(6630).
[24] 欧阳晓, 朱翔, 贺清云. 基于生态系统服务和生态系统健康的生态风险评价——以长株潭城市群为例[J]. 生态学报, 2020, 40(16):5478-5489.
[24] Ouyang X, Zhu X, He Q Y. Incorporating ecosystem services with ecosystem health for ecological risk assessment:A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration,China[J]. Acta Ecologica Sinica, 2020, 40(16):5478-5489.
[25] Xie G, Zhang C, Zhen L, et al. Dynamic changes in the value of China’s ecosystem services[J]. Ecosystem Services, 2017(26):146-154.
[26] 舒波, 李雨哲, 王玲, 等. 乐山市土地利用与生态系统服务价值时空动态变化分析[J]. 生态科学, 2022, 41(1):159-168.
[26] Shu B, Li Y Z, Wang L, et al. Spatial and temporal dynamic changes of land use and ecosystem service value in Leshan City[J]. Ecological Science, 2022, 41(1):159-168.
[27] 许长军, 金孙梅, 王英. 基于GIS的青藏高原人居环境自然适宜性评价[J]. 生态科学, 2020, 39(6):93-103.
[27] Xu C J, Jin S M, Wang Y. Natural suitability evaluation of human settlements in Qinghai-Tibet Plateau based on GIS[J]. Ecological Science, 2020, 39(6):93-103.
[28] 李传华, 范也平, 曹红娟, 等. 基于CASA模型的植被第一性生产力人为影响定量研究——以石羊河流域为例[J]. 干旱区地理, 2018, 41(1):142-151.
[28] Li C H, Fan Y P, Cao H J, et al. Impact of human activities on net primary productivity based on the CASA model:A case study of the Shiyang River Basin[J]. Arid Land Geography, 2018, 41(1):142-151.
[29] 杨雪荻, 白永平, 车磊, 等. 甘肃省生态安全时空演变特征及影响因素解析[J]. 生态学报, 2020, 40(14):4785-4793.
[29] Yang X D, Bai Y P, Che L, et al. Spatio-temporal evolution and influencing factors of ecological security pattern in Gansu Province[J]. Acta Ecologica Sinica, 2020, 40(14):4785-4793.
[30] 候启, 张勃, 何航, 等. 近50多年河西地区干热风事件时空变化特征[J]. 干旱区研究, 2019, 36(2):403-411.
[30] Hou Q, Zhang B, He H, et al. Spatiotemporal variation of dry-hot wind events in the Hexi region in recent 50 years[J]. Arid Zone Research, 2019, 36(2):403-411.
[31] 许春娟, 贾生海, 白有帅, 等. 河西走廊荒漠区及水源涵养区水保和人工植被建设刍议[J]. 水利规划与设计, 2022(4):89-92.
[31] Xu C J, Jia S H, Bai Y S, et al. Discussion on the construction of water conservation and artificial vegetation in the desert area and water conservation area of the Hexi Corridor[J]. Water Resources Planning and Design, 2022(4):89-92.
[1] WANG Yan, WANG Licheng, WU Jinwen. A review of the estimation methods for daily mean temperatures using remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 1-8.
[2] WANG Ning, JIANG Decai, ZHENG Xiangxiang, ZHONG Chang. Assessing the susceptibility of slope geological hazards based on multi-source heterogeneous data: A case study of Longgang District, Shenzhen City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 122-129.
[3] LIU Xiaomin, AMUGULENG , YANG Yaotian, LIU Yong. Ecological security evaluation of counties/banners in the Yellow River basin in Ordos[J]. Remote Sensing for Natural Resources, 2023, 35(4): 139-148.
[4] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[5] YUAN Hong, YI Guihua, ZHANG Tingbin, BIE Xiaojuan, LI Jingji, WANG Guoyan, XU Yonghao. Suitability of photovoltaic development in the Western Sichuan Plateau based on remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 301-311.
[6] XIAO Hui, LI Huitang, GU Yuehan, SHENG Qinghong. A quality-guided least squares phase unwrapping algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 25-33.
[7] CAO Delong, LIN Zhen, TANG Tingyuan, LI Chuyu, WANG Xiaorui. Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis[J]. Remote Sensing for Natural Resources, 2023, 35(4): 34-42.
[8] TIAN Zhao, LIANG Ailin. Remote sensing-based monitoring and analysis of residential carbon emissions[J]. Remote Sensing for Natural Resources, 2023, 35(4): 43-52.
[9] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[10] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[11] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[12] WANG Zihao, LI Yikun, LI Xiaojun, YANG Shuwen. Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2023, 35(4): 96-104.
[13] YIN Yaqiu, WANG Jing, YANG Jinzhong, ZHU Xiaohua, WANG Liwei, Xing Yu, LI Tianqi, YU Yang. Remote sensing-based monitoring and evaluation of anthropogenic influences on national marine nature reserves in Hainan Province from 2016 to 2020[J]. Remote Sensing for Natural Resources, 2023, 35(4): 149-158.
[14] WANG Zuo, WANG Meng, WANG Changchang, LI Hu, ZHANG Yun. Spatio-temporal evolution of ecosystem health in Anhui Province from 1980 to 2015[J]. Remote Sensing for Natural Resources, 2023, 35(4): 159-168.
[15] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech