Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 148-154     DOI: 10.6046/zrzyyg.2024054
|
An intelligent platform for extracting patches from multisource domestic satellite images and its application
PANG Min()
Shanxi Institute of Surveying, Mapping and Geographic Information, Taiyuan 030001, China
Download: PDF(2228 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study designed a one-stop platform for automatically extracting patches from multisource domestic satellite images based on a deep learning framework. The platform focuses primarily on critical techniques including semantic segmentation of ground objects, swarm intelligence algorithms for patch extraction, and deep feature interpretation. To address challenges in remote sensing image interpretation, such as significant color differences, vast data volumes of single images, diverse multi-channel image representations, and considerable differences in the sizes of remote sensing targets, the platform incorporates intelligent semantic segmentation and swarm intelligence algorithms for automatic patch extraction into the framework. It offers a range of customizable general and specialized models while supporting the self-training of models. With functions including large-scale data management, data annotation, model training, model testing, patch extraction, and application analysis, the platform has been successfully applied to the intelligent semantic segmentation and patch extraction of ground objects like buildings, vegetation, farmland, industrial zones, and water bodies in Taiyuan City, Shanxi Province based on multisource domestic satellite images.

Keywords domestic satellite image      semantic segmentation      patch extraction      remote sensing image interpretation      deep learning      multi-scale features     
ZTFLH:  TP79  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Min PANG
Cite this article:   
Min PANG. An intelligent platform for extracting patches from multisource domestic satellite images and its application[J]. Remote Sensing for Natural Resources, 2025, 37(2): 148-154.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024054     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/148
Fig.1  Overall architecture diagram of domestic multi-source satellite spot intelligent extraction platform
Fig.2  Functional design of domestic multi source satellite spot extraction platform
年度 耕地 林地 草地 水体 建筑物 硬化
地表
堆掘地
2015年 9 034 32 877 19 926 1 639 18 764 6 479 2 916
2016年 9 074 32 792 19 912 1 583 18 734 6 760 2 877
2017年 8 897 32 723 19 373 1 520 19 761 12 913 3 201
2018年 8 798 32 679 18 851 1 507 20 792 13 496 3 784
2019年 9 558 35 806 19 207 1 579 22 065 15 287 5 223
2020年 9 513 43 966 20 027 2 780 23 580 16 112 5 616
2021年 23 671 75 282 36 972 2 520 20 082 26 896 23 527
Tab.1  Integrated classification spot statistics (个)
Fig.3  Example of original and label images
Fig.4  Overall research technology framework diagram of the platform
Fig.5  Algorithm platform
Fig.6  Structure diagram of deep feature interpretation method based on multi-scale feature multi-dimensional fusion
方法 Acc 总体指标
耕地 草地 水体 建筑物 硬化地表 堆掘地 道路 mAcc mIoU mF1
PSPNet 79.94 44.35 88.09 86.76 26.67 69.10 69.23 69.62 57.33 70.61
DeepLabV3 77.68 44.19 87.08 86.39 29.21 70.04 68.49 69.58 56.68 69.78
Segformer 82.46 51.64 87.69 85.77 26.47 71.65 70.97 71.07 58.92 71.69
Swin Transformer 82.93 37.99 87.01 88.36 11.09 71.60 61.42 67.09 55.59 68.34
DeepLabv3+Res2Net 59.97 72.92
FTUnetFormer 81.35 52.71 89.33 77.61 73.02 73.14 76.15 64.30 78.76
Tab.2  Experimental indicators of various model algorithms on the 2019 Taiyuan remote sensing image dataset (%)
[1] 刘东升, 廖通逵, 孙焕英, 等. 中国遥感软件研制进展与发展方向——以像素专家PIE为例[J]. 中国图象图形学报, 2021, 26(5):1169-1178.
[1] Liu D S, Liao T K, Sun H Y, et al. Research progress and development direction of Chinese remote sensing software:Taking PIE as an example[J]. Journal of Image and Graphics, 2021, 26(5):1169-1178.
[2] 胥培雲, 谢春营, 邹健健. 基于U-Net的高分辨率遥感影像建筑物自动解译[J]. 国土资源导刊, 2023, 20(2):66-71.
[2] Xu P Y, Xie C Y, Zou J J. Automatic interpretation of high resolution remote sensing images of building based on U-net[J]. Land & Resources Herald, 2023, 20(2):66-71.
[3] 郭恒亮, 牛子儒, 赫晓慧, 等. 基于多尺度特征融合的遥感影像语义分割[J]. 计算机应用与软件, 2023, 40(11):248-253.
[3] Guo H L, Niu Z R, He X H, et al. Remote sensing image semantic segmentation based on multi-scale feature fusion network[J]. Computer Applications and Software, 2023, 40(11):248-253.
[4] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision - ECCV 2018:15th European Conference,Munich,Germany,September 8-14,2018,Proceedings,Part VII.ACM, 2018:833-851.
[5] Jiao L, Liang M, Chen H, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2017, 55(10):5585-5599.
[6] 崔宾阁, 吴景, 李心慧, 等. 结合深度学习和植被指数的滨海湿地高分二号遥感影像信息提取[J]. 遥感学报, 2023, 27(6):1376-1386.
[6] Cui B G, Wu J, Li X H, et al. Combination of deep learning and vegetation index for coastal wetland mapping using GF-2 remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(6):1376-1386.
[7] 李笑迎. 高分辨率遥感图像语义分割网络模型研究[D]. 秦皇岛: 燕山大学, 2022.
[7] Li X Y. Research on semantic segmentation network model of high resolution remote sensing image[D]. Qinhuangdao: Yanshan University, 2022.
[8] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4):255-263.doi: 10.6046/zrzyyg.2022354.
[8] Liu H W, Chen F L, Liao Y A. Remote sensing dynamic monitoring and driving factor analysis for the Beijing section of Ming Great Wall[J]. Remote Sensing for Natural Resources, 2023, 35(4):255-263.doi:10.6046/zrzyyg.2022354.
[9] 程滔, 吴芸, 郑新燕, 等. 面向遥感影像智能分类的海量样本数据采集方法[J]. 测绘通报, 2019(10):56-60.
doi: 10.13474/j.cnki.11-2246.2019.0318
[9] Cheng T, Wu Y, Zheng X Y, et al. A massive sample data acquisition method for intelligent classification of remote sensing images[J]. Bulletin of Surveying and Mapping, 2019(10):56-60.
doi: 10.13474/j.cnki.11-2246.2019.0318
[10] Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing:A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
[11] Li S, Song W, Fang L, et al. Deep learning for hyperspectral image classification:An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709.
[12] Deng L T, Zhao Y R. Deep learning-based semantic feature extraction: A literature review and future directions[J]. ZTE Communications, 2023, 21(2): 11-17.
[13] 张戬, 高雅. 深度学习遥感影像解译技术在耕地保护中的应用[J]. 测绘通报, 2023(8):142-145.
doi: 10.13474/j.cnki.11-2246.2023.0247
[13] Zhang J, Gao Y. Application of deep learning remote sensing image interpretation technology in cultivated land protection[J]. Bulletin of Surveying and Mapping, 2023(8):142-145.
doi: 10.13474/j.cnki.11-2246.2023.0247
[14] 赵凌虎, 袁希平, 甘淑, 等. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1):107-114.doi: 10.6046/zrzyyg.2021460.
[14] Zhao L H, Yuan X P, Gan S, et al. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1):107-114.doi: 10.6046/zrzyyg.2021460.
[15] 凤磊, 陆灏, 耿帅帅, 等. 基于改进Deeplabv3+的遥感图像语义分割算法[J]. 宁夏师范学院学报, 2023, 44(10):65-74.
[15] Feng L, Lu H, Geng S S, et al. Remote sensing image semantic segmentation algorithm based on improved Deeplabv3+[J]. Journal of Ningxia Normal University, 2023, 44(10):65-74.
[16] 戴永东, 姚建光, 李勇, 等. 输电线路无人机巡检自主导航算法研究[J]. 重庆理工大学学报(自然科学), 2023, 37(11):221-228.
[16] Dai Y D, Yao J G, Li Y, et al. Research on autonomous navigation algorithm for transmission line UAV inspection[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(11):221-228.
[1] HE Xiaojun, LUO Jie. Semantic segmentation of high-resolution remote sensing images based on context- and class-aware feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(2): 1-10.
[2] ZHENG Zongsheng, GAO Meng, ZHOU Wenhuan, WANG Zhenghan, HUO Zhijun, ZHANG Yuewei. Densely connected multiscale semantic segmentation for land cover based on the iterative optimization strategy for samples[J]. Remote Sensing for Natural Resources, 2025, 37(2): 11-18.
[3] LIU Chenchen, GE Xiaosan, WU Yongbin, YU Haikun, ZHANG Beibei. A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+[J]. Remote Sensing for Natural Resources, 2025, 37(1): 31-37.
[4] HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
[5] CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
[6] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[7] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[8] LI Shiqi, YAO Guoqing. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
[9] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[10] ZHANG Ruirui, XIA Lang, CHEN Liping, DING Chenchen, ZHENG Aichun, HU Xinmiao, YI Tongchuan, CHEN Meixiang, CHEN Tianen. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 216-224.
[11] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[12] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[13] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[14] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[15] LI Wanyue, LOU Debo, WANG Chenghui, LIU Huan, ZHANG Changqing, FAN Yinglin, DU Xiaochuan. A granitic pegmatite information extraction method based on improved U-Net[J]. Remote Sensing for Natural Resources, 2024, 36(2): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech