|
Abstract This study designed a one-stop platform for automatically extracting patches from multisource domestic satellite images based on a deep learning framework. The platform focuses primarily on critical techniques including semantic segmentation of ground objects, swarm intelligence algorithms for patch extraction, and deep feature interpretation. To address challenges in remote sensing image interpretation, such as significant color differences, vast data volumes of single images, diverse multi-channel image representations, and considerable differences in the sizes of remote sensing targets, the platform incorporates intelligent semantic segmentation and swarm intelligence algorithms for automatic patch extraction into the framework. It offers a range of customizable general and specialized models while supporting the self-training of models. With functions including large-scale data management, data annotation, model training, model testing, patch extraction, and application analysis, the platform has been successfully applied to the intelligent semantic segmentation and patch extraction of ground objects like buildings, vegetation, farmland, industrial zones, and water bodies in Taiyuan City, Shanxi Province based on multisource domestic satellite images.
|
Keywords
domestic satellite image
semantic segmentation
patch extraction
remote sensing image interpretation
deep learning
multi-scale features
|
|
Issue Date: 09 May 2025
|
|
|
[1] |
刘东升, 廖通逵, 孙焕英, 等. 中国遥感软件研制进展与发展方向——以像素专家PIE为例[J]. 中国图象图形学报, 2021, 26(5):1169-1178.
|
[1] |
Liu D S, Liao T K, Sun H Y, et al. Research progress and development direction of Chinese remote sensing software:Taking PIE as an example[J]. Journal of Image and Graphics, 2021, 26(5):1169-1178.
|
[2] |
胥培雲, 谢春营, 邹健健. 基于U-Net的高分辨率遥感影像建筑物自动解译[J]. 国土资源导刊, 2023, 20(2):66-71.
|
[2] |
Xu P Y, Xie C Y, Zou J J. Automatic interpretation of high resolution remote sensing images of building based on U-net[J]. Land & Resources Herald, 2023, 20(2):66-71.
|
[3] |
郭恒亮, 牛子儒, 赫晓慧, 等. 基于多尺度特征融合的遥感影像语义分割[J]. 计算机应用与软件, 2023, 40(11):248-253.
|
[3] |
Guo H L, Niu Z R, He X H, et al. Remote sensing image semantic segmentation based on multi-scale feature fusion network[J]. Computer Applications and Software, 2023, 40(11):248-253.
|
[4] |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision - ECCV 2018:15th European Conference,Munich,Germany,September 8-14,2018,Proceedings,Part VII.ACM, 2018:833-851.
|
[5] |
Jiao L, Liang M, Chen H, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2017, 55(10):5585-5599.
|
[6] |
崔宾阁, 吴景, 李心慧, 等. 结合深度学习和植被指数的滨海湿地高分二号遥感影像信息提取[J]. 遥感学报, 2023, 27(6):1376-1386.
|
[6] |
Cui B G, Wu J, Li X H, et al. Combination of deep learning and vegetation index for coastal wetland mapping using GF-2 remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(6):1376-1386.
|
[7] |
李笑迎. 高分辨率遥感图像语义分割网络模型研究[D]. 秦皇岛: 燕山大学, 2022.
|
[7] |
Li X Y. Research on semantic segmentation network model of high resolution remote sensing image[D]. Qinhuangdao: Yanshan University, 2022.
|
[8] |
刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4):255-263.doi: 10.6046/zrzyyg.2022354.
|
[8] |
Liu H W, Chen F L, Liao Y A. Remote sensing dynamic monitoring and driving factor analysis for the Beijing section of Ming Great Wall[J]. Remote Sensing for Natural Resources, 2023, 35(4):255-263.doi:10.6046/zrzyyg.2022354.
|
[9] |
程滔, 吴芸, 郑新燕, 等. 面向遥感影像智能分类的海量样本数据采集方法[J]. 测绘通报, 2019(10):56-60.
doi: 10.13474/j.cnki.11-2246.2019.0318
|
[9] |
Cheng T, Wu Y, Zheng X Y, et al. A massive sample data acquisition method for intelligent classification of remote sensing images[J]. Bulletin of Surveying and Mapping, 2019(10):56-60.
doi: 10.13474/j.cnki.11-2246.2019.0318
|
[10] |
Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing:A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
|
[11] |
Li S, Song W, Fang L, et al. Deep learning for hyperspectral image classification:An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709.
|
[12] |
Deng L T, Zhao Y R. Deep learning-based semantic feature extraction: A literature review and future directions[J]. ZTE Communications, 2023, 21(2): 11-17.
|
[13] |
张戬, 高雅. 深度学习遥感影像解译技术在耕地保护中的应用[J]. 测绘通报, 2023(8):142-145.
doi: 10.13474/j.cnki.11-2246.2023.0247
|
[13] |
Zhang J, Gao Y. Application of deep learning remote sensing image interpretation technology in cultivated land protection[J]. Bulletin of Surveying and Mapping, 2023(8):142-145.
doi: 10.13474/j.cnki.11-2246.2023.0247
|
[14] |
赵凌虎, 袁希平, 甘淑, 等. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1):107-114.doi: 10.6046/zrzyyg.2021460.
|
[14] |
Zhao L H, Yuan X P, Gan S, et al. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1):107-114.doi: 10.6046/zrzyyg.2021460.
|
[15] |
凤磊, 陆灏, 耿帅帅, 等. 基于改进Deeplabv3+的遥感图像语义分割算法[J]. 宁夏师范学院学报, 2023, 44(10):65-74.
|
[15] |
Feng L, Lu H, Geng S S, et al. Remote sensing image semantic segmentation algorithm based on improved Deeplabv3+[J]. Journal of Ningxia Normal University, 2023, 44(10):65-74.
|
[16] |
戴永东, 姚建光, 李勇, 等. 输电线路无人机巡检自主导航算法研究[J]. 重庆理工大学学报(自然科学), 2023, 37(11):221-228.
|
[16] |
Dai Y D, Yao J G, Li Y, et al. Research on autonomous navigation algorithm for transmission line UAV inspection[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(11):221-228.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|