Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 8-14     DOI: 10.6046/zrzyyg.2023260
|
A hyperspectral unmixing and few-shot classification method based on 3DCAE network
HUANG Chuan1(), LI Yaqin1, QI Yueran2, WEI Xiaoyan3, SHAO Yuanzheng4()
1. School of Mathematics and Computer Science, Wuhan Polytechnic University,Wuhan 430023,China
2. School of Geography and Tourism, Anhui Normal University,Wuhu 241001, China
3. Yunnan Provincial Archives of Surveying and Mapping (Yunnan Provincial Geomatics Centre), Kunming 650034, China
4. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
Download: PDF(3738 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The rapid development of hyperspectral remote sensing technology in China fully ensures the effective application of large-scale surface feature classification. However, achieving high-precision classification under few-spot conditions while fully leveraging hyperspectral spatial-spectral information remains challenging. This study developed a 3D convolutional autoencoder (3D-CAE) network guided by physical constraints from mixed pixel decomposition. This approach enables accurate estimation of endmember abundance while effectively expressing regularized spatial-spectral features of hyperspectral data. In combination with a support vector machine (SVM) classifier, the method achieves hyperspectral classification under few-spot conditions. The classification performance of various models was evaluated at different sampling rates. To validate the proposed method, this study conducted experiments including comparisons with traditional hyperspectral feature extraction and classification methods, such as supervised classification approaches. The classification performance of various models was also evaluated at different sampling rates. The experimental results demonstrate that the proposed hyperspectral classification method has a significant advantage of accuracy, achieving a mean intersection over union (mIoU) of 0.829, which was close to 0.8 even at a low sampling rate of 1/200, surpassing its counterparts. These results confirm that the proposed method exhibits robustness under few-spot conditions. This study provides a valuable technical reference for addressing hyperspectral classification challenges under few-spot conditions.

Keywords deep learning      hyperspectral imagery      classification      convolutional neural network      unmixing     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan HUANG
Yaqin LI
Yueran QI
Xiaoyan WEI
Yuanzheng SHAO
Cite this article:   
Chuan HUANG,Yaqin LI,Yueran QI, et al. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023260     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/8
Fig.1  Hyperspectral image and endmember spectra
Fig.2  The hyperspectral classification workflow based on 3D-CAE
特征层 卷积核
大小
卷积核
数量/个
激活
函数
特征
尺寸
Conv3D-1 (1, 1, 7) 32 ReLU (1, 1, 155, 32)
Conv3D-2 (1, 1, 7) 16 ReLU (1, 1, 148, 16)
Conv3D-3 (1, 1, 7) 8 ReLU (1, 1, 141, 8)
Conv3D-4 (1, 1, 7) 2 ReLU (1, 1, 134, 2)
Flatten 134×2
Dense-1 32 ReLU 32
Dense-2 6 Softmax 6
Dense-3 162 ReLU 162
Tab.1  Network composition and related parameter settings
类型 沥青 草地 树木 屋顶 金属 土壤
预测丰度
真实值
RMSE
图例
Tab.2  Model prediction of the abundance from different endmembers compared to the true values
Fig.3  Comparison chart of classification results predicted by different models versus ground truth
模型 总体分
类精度
精确度 召回率 F1得分 mIoU
3D-CAE-SVM 0.927 0.936 0.883 0.905 0.829
PCA-SVM 0.912 0.928 0.854 0.884 0.796
MNF-SVM 0.895 0.913 0.847 0.873 0.779
FCLS-SVM 0.850 0.832 0.775 0.778 0.657
SVM 0.916 0.929 0.856 0.885 0.799
SAM 0.847 0.870 0.831 0.821 0.777
SID 0.712 0.652 0.771 0.625 0.513
Tab.3  Comparison table of prediction accuracy for different models
Fig.4  Trend chart of classification accuracy variation for various models at different sampling rates
[1] 杜培军, 谭琨, 夏俊士. 高光谱遥感影像分类与支持向量机应用研究[M]. Beijing: Science Press, 2012,1-160.
[1] Du P J, Tan K, Xia J S, et al. Research on hyperspectral remote sensing image classification and support vector machine application[M]. Beijing: Science Press, 2012,1-160.
[2] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview:Geometrical,statistical,and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2):354-379.
[3] 刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报, 2020, 24(4):333-344.
[3] Liu Y N, Sun D X, Hu X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing(Chinese), 2020, 24(4):333-344.
[4] Zhong Y, Wang X, Wang S, et al. Advances in spaceborne hyperspectral remote sensing in China[J]. Geo-Spatial Information Science, 2021, 24(1):95-120.
[5] Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.
[6] Black M, Riley T R, Ferrier G, et al. Automated lithological mapping using airborne hyperspectral thermal infrared data:A case study from Anchorage Island,Antarctica[J]. Remote Sensing of Environment, 2016,176:225-241.
[7] Alberti A, Alessandro V, Pieruccini U, et al. Landsat TM data processing for lithological discrimination in the Caraculo area (Namibe Province,SW Angola)[J]. Journal of African Earth Sciences (and the Middle East), 1993, 17(3):261-274.
[8] Hecker C, van der Meijde M, van der Werff H, et al. Assessing the influence of reference spectra on synthetic SAM classification results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4162-4172.
[9] Chang C I. An information-theoretic approach to spectral variability,similarity,and discrimination for hyperspectral image analysis[J]. IEEE Transactions on Information Theory, 2000, 46(5):1927-1932.
[10] Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362.
[11] Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing:A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
[12] Zhou H, Huang L, Wang Y. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12):1226004.
[13] Han M, Cong R, Li X, et al. Joint spatial-spectral hyperspectral image classification based on convolutional neural network[J]. Pattern Recognition Letters, 2020,130:38-45.
[14] Li C, Cai R, Yu J. An attention-based 3D convolutional autoencoder for few-shot hyperspectral unmixing and classification[J]. Remote Sensing, 2023, 15(2):451.
[15] Dobigeon N, Tourneret J Y, Richard C, et al. Nonlinear unmixing of hyperspectral images:Models and algorithms[J]. IEEE Signal Processing Magazine, 2014, 31(1):82-94.
[16] Winter M E. N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]// Imaging Spectrometry V.Denver, CO.SPIE,1999:266-275.
[17] Zhang X, Sun Y, Zhang J, et al. Hyperspectral unmixing via deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1755-1759.
[18] Halimi A, Altmann Y, Dobigeon N, et al. Nonlinear unmixing of hyperspectral images using a generalized bilinear model[C]//2011 IEEE Statistical Signal Processing Workshop (SSP). June 28-30,2011, Nice,France.IEEE,2011:413-416.
[19] Licciardi G A, Del Frate F.Pixel unmixing in hyperspectral data by means of neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4163-4172.
[20] Zhu F, Honeine P. Biobjective nonnegative matrix factorization:Linear versus kernel-based models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):4012-4022.
[21] Févotte C, Dobigeon N. Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization[J]. IEEE Transactions on Image Processing, 2015, 24(12):4810-4819.
doi: 10.1109/TIP.2015.2468177 pmid: 26285151
[22] 韩竹, 高连如, 张兵, 等. 高分五号高光谱图像自编码网络非线性解混[J]. 遥感学报, 2020, 24(4):388-400.
[22] Han Z, Gao L R, Zhang B, et al. Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks[J]. National Remote Sensing Bulletin, 2020, 24(4):388-400.
[23] 朱玲, 秦凯, 李明, 等. 改进的堆栈稀疏自编码矿物高光谱端元识别研究[J]. 光谱学与光谱分析, 2021, 41(4):1288-1293.
[23] Zhu L, Qin K, Li M, et al. Research on improved stacked sparse autoencoders for mineral hyperspectral endmember extraction[J]. Spectroscopy and Spectral Analysis, 2021, 41(4):1288-1293.
[24] 朱治青, 苏远超, 李朋飞, 等. 双约束深度卷积网络的高光谱图像空谱解混方法[J]. 信号处理, 2023, 39(1):128-142.
[24] Zhu Z Q, Su Y C, Li P F, et al. Spectral-spatial hyperspectral unmixing using deep double-constraints convolutional network[J]. Journal of Signal Processing, 2023, 39(1):128-142.
[25] Qu Y, Qi H. uDAS:An untied denoising autoencoder with sparsity for spectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1698-1712.
[26] Ozkan S, Kaya B, Akar G B. EndNet:Sparse AutoEncoder network for endmember extraction and hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):482-496.
[27] Su Y, Li J, Plaza A, et al. DAEN:Deep autoencoder networks for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4309-4321.
[28] Khajehrayeni F, Ghassemian H. Hyperspectral unmixing using deep convolutional autoencoders in a supervised scenario[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,13:567-576.
[29] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):529-545.
[30] Palsson B, Sveinsson J R, Ulfarsson M O. Blind hyperspectral unmixing using autoencoders:A critical comparison[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15:1340-1372.
[31] Foody G M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data[J]. International Journal of Remote Sensing, 1996, 17(7):1317-1340.
[32] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256.
[32] Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256.
[1] FAN Yinglin, DU Song, ZHAO Yue, QIU Jingzhi, DU Xiaochuan, ZHANG Yufeng, DING Yan, SONG Sitong, CHE Qiaohui. Information extraction of coal gangue mountain based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 54-61.
[2] ZHANG Dongyun, WU Tianjun, LI Manjia, GUO Yifei, LUO Jiancheng, DONG Wen. Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis[J]. Remote Sensing for Natural Resources, 2024, 36(4): 124-134.
[3] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[4] LI Wei, FAN Yanguo, ZHOU Peixi. Improved Transformer-based hyperspectral image classification method for surface features: A case study of the Yellow River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 137-145.
[5] ZHANG Ruirui, XIA Lang, CHEN Liping, DING Chenchen, ZHENG Aichun, HU Xinmiao, YI Tongchuan, CHEN Meixiang, CHEN Tianen. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 216-224.
[6] SHANG Ming, MA Jie, LI Yue, ZHAO Fei, GU Pengcheng, PAN Guangyao, LI Qian, REN Yangyang. Exploring the object-oriented land cover classification based on Landsat and GF data[J]. Remote Sensing for Natural Resources, 2024, 36(3): 240-247.
[7] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[8] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[9] ZHANG Lijun, HE Sirui, ZHANG Jiandong, PENG Guangxiong, XU Zhibin, XIE Jiancheng, TANG Kai, BU Jiancai. Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 173-187.
[10] LIU Yongxin, ZHANG Siyuan, BIAN Peng, WANG Pijun, YUAN Shuai. Exploring the spatio-temporal evolution of land cover types in the Bayannur section of the Yellow River basin from 1989 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2): 207-217.
[11] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[12] LI Wanyue, LOU Debo, WANG Chenghui, LIU Huan, ZHANG Changqing, FAN Yinglin, DU Xiaochuan. A granitic pegmatite information extraction method based on improved U-Net[J]. Remote Sensing for Natural Resources, 2024, 36(2): 89-96.
[13] LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
[14] LIU Xiaoliang, WANG Zhihua, XING Jianghe, ZHOU Rui, YANG Xiaomei, LIU Yueming, ZHANG Junyao, MENG Dan. Identifying and monitoring tailings ponds by integrating multi-source geographic data and high-resolution remote sensing images: A case study of Gejiu City, Yunnan Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 103-109.
[15] LI Xintong, SHI Lan, CHEN Duoyan. A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area[J]. Remote Sensing for Natural Resources, 2023, 35(4): 105-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech