|
|
|
|
|
|
A hyperspectral unmixing and few-shot classification method based on 3DCAE network |
HUANG Chuan1( ), LI Yaqin1, QI Yueran2, WEI Xiaoyan3, SHAO Yuanzheng4( ) |
1. School of Mathematics and Computer Science, Wuhan Polytechnic University,Wuhan 430023,China 2. School of Geography and Tourism, Anhui Normal University,Wuhu 241001, China 3. Yunnan Provincial Archives of Surveying and Mapping (Yunnan Provincial Geomatics Centre), Kunming 650034, China 4. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China |
|
|
Abstract The rapid development of hyperspectral remote sensing technology in China fully ensures the effective application of large-scale surface feature classification. However, achieving high-precision classification under few-spot conditions while fully leveraging hyperspectral spatial-spectral information remains challenging. This study developed a 3D convolutional autoencoder (3D-CAE) network guided by physical constraints from mixed pixel decomposition. This approach enables accurate estimation of endmember abundance while effectively expressing regularized spatial-spectral features of hyperspectral data. In combination with a support vector machine (SVM) classifier, the method achieves hyperspectral classification under few-spot conditions. The classification performance of various models was evaluated at different sampling rates. To validate the proposed method, this study conducted experiments including comparisons with traditional hyperspectral feature extraction and classification methods, such as supervised classification approaches. The classification performance of various models was also evaluated at different sampling rates. The experimental results demonstrate that the proposed hyperspectral classification method has a significant advantage of accuracy, achieving a mean intersection over union (mIoU) of 0.829, which was close to 0.8 even at a low sampling rate of 1/200, surpassing its counterparts. These results confirm that the proposed method exhibits robustness under few-spot conditions. This study provides a valuable technical reference for addressing hyperspectral classification challenges under few-spot conditions.
|
Keywords
deep learning
hyperspectral imagery
classification
convolutional neural network
unmixing
|
|
Issue Date: 17 February 2025
|
|
|
[1] |
杜培军, 谭琨, 夏俊士. 高光谱遥感影像分类与支持向量机应用研究[M]. Beijing: Science Press, 2012,1-160.
|
[1] |
Du P J, Tan K, Xia J S, et al. Research on hyperspectral remote sensing image classification and support vector machine application[M]. Beijing: Science Press, 2012,1-160.
|
[2] |
Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview:Geometrical,statistical,and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2):354-379.
|
[3] |
刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报, 2020, 24(4):333-344.
|
[3] |
Liu Y N, Sun D X, Hu X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing(Chinese), 2020, 24(4):333-344.
|
[4] |
Zhong Y, Wang X, Wang S, et al. Advances in spaceborne hyperspectral remote sensing in China[J]. Geo-Spatial Information Science, 2021, 24(1):95-120.
|
[5] |
Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.
|
[6] |
Black M, Riley T R, Ferrier G, et al. Automated lithological mapping using airborne hyperspectral thermal infrared data:A case study from Anchorage Island,Antarctica[J]. Remote Sensing of Environment, 2016,176:225-241.
|
[7] |
Alberti A, Alessandro V, Pieruccini U, et al. Landsat TM data processing for lithological discrimination in the Caraculo area (Namibe Province,SW Angola)[J]. Journal of African Earth Sciences (and the Middle East), 1993, 17(3):261-274.
|
[8] |
Hecker C, van der Meijde M, van der Werff H, et al. Assessing the influence of reference spectra on synthetic SAM classification results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4162-4172.
|
[9] |
Chang C I. An information-theoretic approach to spectral variability,similarity,and discrimination for hyperspectral image analysis[J]. IEEE Transactions on Information Theory, 2000, 46(5):1927-1932.
|
[10] |
Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362.
|
[11] |
Zhu X X, Tuia D, Mou L, et al. Deep learning in remote sensing:A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36.
|
[12] |
Zhou H, Huang L, Wang Y. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12):1226004.
|
[13] |
Han M, Cong R, Li X, et al. Joint spatial-spectral hyperspectral image classification based on convolutional neural network[J]. Pattern Recognition Letters, 2020,130:38-45.
|
[14] |
Li C, Cai R, Yu J. An attention-based 3D convolutional autoencoder for few-shot hyperspectral unmixing and classification[J]. Remote Sensing, 2023, 15(2):451.
|
[15] |
Dobigeon N, Tourneret J Y, Richard C, et al. Nonlinear unmixing of hyperspectral images:Models and algorithms[J]. IEEE Signal Processing Magazine, 2014, 31(1):82-94.
|
[16] |
Winter M E. N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]// Imaging Spectrometry V.Denver, CO.SPIE,1999:266-275.
|
[17] |
Zhang X, Sun Y, Zhang J, et al. Hyperspectral unmixing via deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1755-1759.
|
[18] |
Halimi A, Altmann Y, Dobigeon N, et al. Nonlinear unmixing of hyperspectral images using a generalized bilinear model[C]//2011 IEEE Statistical Signal Processing Workshop (SSP). June 28-30,2011, Nice,France.IEEE,2011:413-416.
|
[19] |
Licciardi G A, Del Frate F.Pixel unmixing in hyperspectral data by means of neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4163-4172.
|
[20] |
Zhu F, Honeine P. Biobjective nonnegative matrix factorization:Linear versus kernel-based models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):4012-4022.
|
[21] |
Févotte C, Dobigeon N. Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization[J]. IEEE Transactions on Image Processing, 2015, 24(12):4810-4819.
doi: 10.1109/TIP.2015.2468177
pmid: 26285151
|
[22] |
韩竹, 高连如, 张兵, 等. 高分五号高光谱图像自编码网络非线性解混[J]. 遥感学报, 2020, 24(4):388-400.
|
[22] |
Han Z, Gao L R, Zhang B, et al. Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks[J]. National Remote Sensing Bulletin, 2020, 24(4):388-400.
|
[23] |
朱玲, 秦凯, 李明, 等. 改进的堆栈稀疏自编码矿物高光谱端元识别研究[J]. 光谱学与光谱分析, 2021, 41(4):1288-1293.
|
[23] |
Zhu L, Qin K, Li M, et al. Research on improved stacked sparse autoencoders for mineral hyperspectral endmember extraction[J]. Spectroscopy and Spectral Analysis, 2021, 41(4):1288-1293.
|
[24] |
朱治青, 苏远超, 李朋飞, 等. 双约束深度卷积网络的高光谱图像空谱解混方法[J]. 信号处理, 2023, 39(1):128-142.
|
[24] |
Zhu Z Q, Su Y C, Li P F, et al. Spectral-spatial hyperspectral unmixing using deep double-constraints convolutional network[J]. Journal of Signal Processing, 2023, 39(1):128-142.
|
[25] |
Qu Y, Qi H. uDAS:An untied denoising autoencoder with sparsity for spectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1698-1712.
|
[26] |
Ozkan S, Kaya B, Akar G B. EndNet:Sparse AutoEncoder network for endmember extraction and hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):482-496.
|
[27] |
Su Y, Li J, Plaza A, et al. DAEN:Deep autoencoder networks for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4309-4321.
|
[28] |
Khajehrayeni F, Ghassemian H. Hyperspectral unmixing using deep convolutional autoencoders in a supervised scenario[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,13:567-576.
|
[29] |
Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):529-545.
|
[30] |
Palsson B, Sveinsson J R, Ulfarsson M O. Blind hyperspectral unmixing using autoencoders:A critical comparison[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15:1340-1372.
|
[31] |
Foody G M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data[J]. International Journal of Remote Sensing, 1996, 17(7):1317-1340.
|
[32] |
杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256.
|
[32] |
Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|