Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 158-164     DOI: 10.6046/zrzyyg.2023117
|
A landslide detection method using CNN- and SETR-based feature fusion
LI Shiqi(), YAO Guoqing()
School of Information Engineering, China University of Geosciences(Beijing), Beijing 100083, China
Download: PDF(3900 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The accurate and timely detection of landslides is of great significance for reducing the threats to human life and properties, along with relevant losses, caused by landslides. This study proposed a landslide detection method using feature fusion based on convolutional neural networks (CNNs) and Segmentation Transformer (SETR). The CNN-based models utilized a fully convolutional network (FCN), U-Net, and Deeplabv3+, while the Transformer-based models used SETR. First, the landslide detection effects of the CNN-based models were evaluated. Then, SETR was introduced into the encoders of the CNN-based models, and the output of SETR was fused into the CNN decoder structure as the final output of the models. The experiments using the LandSlide4Sense dataset indicate that the fusion of typical CNNs with SETR can effectively improve the landslide detection effects. After SETR fusion, the FCN, U-Net, and Deeplabv3+ models exhibited higher F1-scores, which increased from 0.672 6, 0.727 3, and 0.687 3 to 0.686 9, 0.743 0, and 0.705 5, respectively. Given the close relationship between landslides and terrain, a digital elevation model (DEM) was incorporated into the U-Net model, which outperformed other models. As a result, the F1-score of the model increased from 0.732 5 to 0.750 3.

Keywords CNN      SETR      landslide detection      semantic segmentation     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shiqi LI
Guoqing YAO
Cite this article:   
Shiqi LI,Guoqing YAO. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023117     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/158
Fig.1  Schematic diagram of data
Fig.2  Experimental flow chart
Fig.3  SETR structure diagram
Fig.4  Schematic diagram of U-Net+SETR
Fig.5  Deeplabv3+SETR schematic
Fig.6  Schematic diagram of FCN+SETR
Fig.7  Flow chart of landslide slope data and DEM extraction
遥感影像 真实标签 U-Net U-Net
+SETR
Deeplabv3+ Deeplabv3+
+SETR
FCN FCN+SETR
Tab.1  Comparison of experimental results
遥感影像 真实标签 U-Net+DEM U-Net+DEM
+SETR
Tab.2  Comparison of experimental results with the higher weight of DEM
模型指标 U-Net U-Net+
SETR
Deep-
labv3+
Deeplabv3+
+SETR
FCN FCN+
SETR
召回率/% 68.47 74.26 61.58 66.13 68.83 65.13
准确率/% 77.56 74.34 77.77 75.60 65.75 72.65
F1分数 0.727 3 0.743 0 0.687 3 0.705 5 0.672 6 0.686 9
F1提升/% 2.16 2.65 2.13
Tab.3  Comparison of SETR performance of each model fusion
模型指标 U-Net U-Net+
SETR
U-Net+
DEM
U-Net+
DEM+SETR
召回率/% 68.47 74.26 69.15 75.34
准确率/% 77.56 74.34 77.88 74.73
F1分数 0.727 3 0.743 0 0.732 5 0.750 3
F1提升/% 2.16 2.43
Tab.4  U-Net model increases DEM weight performance comparison
[1] 王宇. 基于深度学习的遥感图像滑坡信息提取算法研究[D]. 哈尔滨: 黑龙江大学, 2020.
[1] Wang Y. Research on landslide information extraction algorithm from remote sensing images based on deep learning[D]. Harbin: Helongjiang University, 2020.
[2] 张帅娟. 变化检测和面向对象结合的高分辨率遥感影像滑坡体提取方法研究[D]. 成都: 西南交通大学, 2017.
[2] Zhang S J. Study on landslide extraction method from high-resolution remote sensing images by combining change detection with object-oriented method[D]. Chengdu: Southwest Jiaotong University, 2017.
[3] 张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.doi:10.6046/zrzyyg.2022434.
[3] Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi: 10.6046/zrzyyg.2022434.
[4] 张越, 宋炜炜. 基于BP神经网络和决策树的昆明市东川区滑坡空间易发性评价[J]. 国土与自然资源研究, 2023(2):67-70.
[4] Zhang Y, Song W W. Spatial susceptibility evaluation of landslide in Dongchuan District of Kunming based on BP neural network and decision tree[J]. Territory & Natural Resources Study, 2023(2):67-70.
[5] 余淙蔚, 柳侃, 殷杰, 等. 一种适用于逻辑回归模型评价浅层滑坡易发性的网格尺度划分方法——以2019年福建省三明市群发浅层滑坡为例[J]. 山地学报, 2022, 40(1): 106-119.
[5] Yu C W, Liu K, Yin J, et al. A grid-scale division method applicable to logistic regression models for evaluating the susceptibility of shallow landslides: Taking the 2019 cluster of shallow landslides in Sanming,Fujian as example[J]. Mountain Research, 2022, 40(1):106-119.
[6] 许高程, 张文君, 王卫红. 支持向量机技术在遥感影像滑坡体提取中的应用[J]. 安徽农业科学, 2009, 37(6):2781-2782,2822.
[6] Xu G C, Zhang W J, Wang W H. Application of supporting vector machine technology in extraction of remote sensing image of landslide[J]. Journal of Anhui Agricultural Sciences, 2009, 37(6):2781-2782,2822.
[7] 牛朝阳, 高欧阳, 刘伟, 等. 光学遥感图像滑坡检测研究进展[J]. 航天返回与遥感, 2023, 44(3):133-144.
[7] Niu C Y, Gao O Y, Liu W, et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3):133-144.
[8] Yu B, Chen F, Xu C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135:104388.
[9] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
[10] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-net model[J]. Remote Sensing, 2020, 12(5):894.
[11] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi :10.6046/zrzyyg.2021204.
[11] Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi :10.6046/zrzyyg.2021204.
[12] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017:640-651.
[13] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]//Navab N,Hornegger J,Wells W M,et al,eds.Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241.
[14] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision.Cham:Springer, 2018:833-851.
[15] 白石, 唐攀攀, 苗朝, 等. 基于高分辨率遥感影像和改进 U-Net 模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[15] Bai S, Tang P P, Miao Z, et al. Information extraction of landslide based on high resolution remote sensing images and an improved U-Net model:A case study of Wenchuan,Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[16] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J/OL]. arXiv, 2020. https://arxiv.org/abs/2010.11929v1.
url: https://arxiv.org/abs/2010.11929v1
[17] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]// Vedaldi A,Bischof H,Brox T,et al.European Conference on Computer Vision.Cham:Springer, 2020:213-229.
[18] Liu Z, Lin Y, Cao Y, et al. Swin transformer:Hierarchical vision transformer using shifted windows[J/OL]. arXiv, 2021. https://arxiv.org/abs/2103.14030v2.
url: https://arxiv.org/abs/2103.14030v2
[19] Xie E Z, Wang W H, Yu Z D, et al. SegFormer:Simple and efficient design for semantic segmentation with Transformers[J/OL]. arXiv, 2021. https://arxiv.org/abs/2105.15203.
url: https://arxiv.org/abs/2105.15203
[20] 张思远, 谭晓玲, 朱木雷, 等. 基于改进Swin Transformer的滑坡分割算法[J]. 国外电子测量技术, 2023, 42(11):49-56.
[20] Zhang S Y, Tan X L, Zhu M L, et al. Landslide segmentation algorithm based on improved Swin Transformer[J]. Foreign Electronic Measurement Technology, 2023, 42(11):49-56.
[21] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:1800-1807.
[1] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[2] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[3] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[4] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[5] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[6] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[7] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[8] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[9] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[10] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[11] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[12] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[13] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[14] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[15] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech