Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 50-59     DOI: 10.6046/zrzyyg.2023052
|
A YOLOv5-based target detection method using high-resolution remote sensing images
SONG Shuangshuang1(), XIAO Kaifei1, LIU Zhaohua1(), ZENG Zhaoliang2
1. School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Download: PDF(19607 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

High-resolution remote sensing images contain rich data and information, which reduce the difference between the target and the background, resulting in substandard detection accuracy and reduced target detection performance. Based on the deep learning algorithm You Only Look Once (YOLO), this study designed a lightweight network model GC-YOLOv5 by combining end-to-end coordinate attention (CA) and the lightweight network module GhostConv. The CA was employed to encode channels along the horizontal and vertical directions, enabling the attention mechanism module to simultaneously capture remote spatial interactions with precise location information and helping the network locate targets of interest more accurately. The original ordinary convolutional module convolutional-batchnormal-SiLu (CBS) was replaced by the GhostConv module, reducing the number of parameters in the feature channel fusion process and the size of the optimal model. Experiments were conducted on the GC-YOLOv5 using the publicly available NWPU-VHR-10 dataset, with the robustness of the model verified on the RSOD dataset. The results show that GC-YOLOv5 yielded a detection accuracy of 96.5% on the NWPU-VHR-10 dataset, with a recall rate of 96.4% and mAP of 97.7%. Moreover, GC-YOLOv5 achieved satisfactory results on the RSOD dataset.

Keywords deep learning      remote sensing image      target detection      YOLOv5     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuangshuang SONG
Kaifei XIAO
Zhaohua LIU
Zhaoliang ZENG
Cite this article:   
Shuangshuang SONG,Kaifei XIAO,Zhaohua LIU, et al. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023052     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/50
Fig.1  Method flow chart
Fig.2  The improved network structure
Fig.3  CA operation structure
Fig.4  Normal convolution operations and GhostConv convolution module operations
Fig.5  Sample diagram of NWPU-VHR-10 dataset and RSOD dataset
平台 配置
脚本语言 Python3.7.15
深度学习框架 Torch1.12.1+cu113
GPU类型 Tesla T4
NVIDIA NVIDIA-SMI 460.32.03
CUDA版本 CUDA Version:11.2
Tab.1  Experimental environment configuration
参数 配置
神经网络优化器 SGD
批次大小 16
学习率 0.01
动量参数 0.937
权重衰减 0.000 5
训练轮数 200
Tab.2  Experimental training parameters
Fig.6  Results comparison chart of precision and mAP@0.5
模型 精度/% 召回率/% mAP@0.5/% 参数数量/106 权重文件数量/MB FPS/(幅·s-1)
YOLOv5 93.1 92.5 95 12.34 24.6 40.65
YOLOv5-CA 92.5 95.6 95.6 12.36 25.9 50.76
YOLOv5-Ghost 93.4 91.7 93.7 9.67 19.5 47.62
GC-YOLOv5 96.5 96.4 97.7 11.37 20.5 46.51
Tab.3  Performance improvement of each part design on the result
模型 精度/
%
召回
率/%
mAP@0.5/% FPS/(幅·s-1)
Faster-RCNN 91.8 93.8
YOLOv5 93.1 92.5 95 40.65
GC-YOLOv5 96.5 96.4 97.7 46.51
Tab.4  Performance of different methods on NWPU-VHR-10 dataset
Fig.7  Example of detection results of NWPU-VHR-10 dataset
图像类别 真实标签 Faster-RCNN YOLOv5 GC-YOLOv5
飞机 13 13 13 13
网球场 4 4 4 4
操场 1 1 1 1
汽车 0 0 0 1
棒球场 0 1 0 0
Tab.5  Comparison between the detection results of different algorithms and the real label in NWPU-VHR-10 dataset
模型 精度/% 召回率/% mAP@0.5/% FPS/(幅· s - 1)
Faster-RCNN 91.8 89.8 -- --
YOLOv5 94.0 86.0 88.7 64.93
GC-YOLOv5 93.4 90.5 92.3 64.93
Tab.6  Performance of different methods on RSOD dataset
Fig.8-1  Example of detection results of RSOD dataset
Fig.8-2  Example of detection results of RSOD dataset
图像类别 真实标签 Faster-RCNN YOLOv5 GC-YOLOv5
飞机 10 10 10 10
立交桥 1 2 1 1
Tab.7  Comparison between the detection results of different algorithms and the real label in RSOD dataset
[1] Fang X L, Hu F, Yang M, et al. Small object detection in remote sensing images based on super-resolution[J]. Pattern Recognition Letters, 2022, 153:107-112.
[2] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
[3] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).IEEE, 2015:1440-1448.
[4] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2016:779-788.
[6] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:6517-6525.
[7] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J/OL]. ArXiv, 2018(2018-4-8). https://arxiv.org/abs/1804.02767.
url: https://arxiv.org/abs/1804.02767
[8] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J/OL]. arXiv, 2022(2022-7-6). http://arxiv.org/abs/2207.02696.
url: http://arxiv.org/abs/2207.02696
[9] Jiang P Y, Ergu D J, Liu F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199:1066-1073.
[10] Liu W, Anguelov D, Erhan D, et al. SSD:single shot MultiBox detector[C]// Computer Vision-ECCV 2016. Springer International Publishing, 2016:21-37.
[11] Lamane M, Tabaa M, Klilou A. Classification of targets detected by mmWave radar using YOLOv5[J]. Procedia Computer Science, 2022, 203:426-431.
[12] Puliti S, Astrup R. Automatic detection of snow breakage at single tree level using YOLOv5 applied to UAV imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112:102946.
[13] Li S W, Gu X Y, Xu X R, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm[J]. Construction and Building Materials, 2021, 273:121949.
[14] Wang Y, Bashir S M A, Khan M, et al. Remote sensing image super-resolution and object detection:Benchmark and state of the art[J]. Expert Systems with Applications, 2022, 197:116793.
[15] Qu Z F, Zhu F Z, Qi C X. Remote sensing image target detection:Improvement of the YOLOv3 model with auxiliary networks[J]. Remote Sensing, 2021, 13(19):3908.
[16] Qi J T, Liu X N, Liu K, et al. An improved YOLOv5 model based on visual attention mechanism:Application to recognition of tomato virus disease[J]. Computers and Electronics in Agriculture, 2022, 194:106780.
[17] Bao W X, Du X, Wang N, et al. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images[J]. Remote Sensing, 2022, 14(20):5176.
[18] Chen W, Gao L, Li X Y, et al. Lightweight convolutional neural network with knowledge distillation for cervical cells classification[J]. Biomedical Signal Processing and Control, 2022, 71:103177.
[19] Yao J, Qi J M, Zhang J, et al. A real-time detection algorithm for kiwifruit defects based on YOLOv5[J]. Electronics, 2021, 10(14):1711.
[20] Han K, Wang Y H, Tian Q, et al. GhostNet:More features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:1577-1586.
[21] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2021:13708-13717.
[22] Cheng G, Han J W, Zhou P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98:119-132.
[23] Cheng G, Han J W. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.
[24] Long Y, Gong Y P, Xiao Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2486-2498.
[25] Jocher G, Chaurasia A, Stoken A, et al. Ultralytics/YOLOv5:V6.2-YOLOv5 classification models,apple M1,reproducibility,clearML and deci.ai integrations[Z]. Zenodo, 2022.
[26] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE, 2018:7132-7141.
[27] Woo S H Y, Park J C, Lee J Y, et al. CBAM:Convolutional block attention module[C]// European Conference on Computer Vision.Springer, 2018:3-19.
[1] ZHAO Binru, NIU Siwen, WANG Liyan, YANG Xiaotong, JIAO Hongbo, WANG Zike. An intelligent color enhancement method for high-resolution remote sensing images of the coastal zone of an island[J]. Remote Sensing for Natural Resources, 2024, 36(2): 70-79.
[2] LI Wanyue, LOU Debo, WANG Chenghui, LIU Huan, ZHANG Changqing, FAN Yinglin, DU Xiaochuan. A granitic pegmatite information extraction method based on improved U-Net[J]. Remote Sensing for Natural Resources, 2024, 36(2): 89-96.
[3] ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
[4] LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
[5] LIU Yujia, XIE Shizhe, DU Yang, YAN Jin, NAN Yanyun, WEN Zhongkai. A two-stage remote sensing image inpainting network combined with spatial semantic attention[J]. Remote Sensing for Natural Resources, 2024, 36(1): 58-66.
[6] LI Xintong, SHI Lan, CHEN Duoyan. A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area[J]. Remote Sensing for Natural Resources, 2023, 35(4): 105-113.
[7] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[8] CHEN Di, PENG Qiuzhi, HUANG Peiyi, LIU Yaxuan. Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5[J]. Remote Sensing for Natural Resources, 2023, 35(4): 90-95.
[9] LIU Hanwei, CHEN Fulong, LIAO Yaao. Remote sensing dynamic monitoring and driving factor analysis for the Beijing section of Ming Great Wall[J]. Remote Sensing for Natural Resources, 2023, 35(4): 255-263.
[10] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[11] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[12] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[13] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[14] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[15] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech