Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 15-23     DOI: 10.6046/zrzyyg.2023230
|
A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images
CHEN Jiaxue(), XIAO Dongsheng1,2(), CHEN Hongyu3
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. Disaster Prevention and Emergency Research Center of Geographic and Remote Sensing Geographic Information, Southwest Petroleum University, Chengdu 610500, China
3. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
Download: PDF(4711 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Extracting accurate water body information holds great significance for water resources protection and urban planning. However, due to numerous surface features and complex environments, along with different morphologies, scales, and spectral characteristics of different water bodies, remote sensing images inevitably exhibit heterogeneity, spectral similarities, and inter-class similarities between water bodies and other surface features. Existing methods fail to fully exploit boundary cues, the semantic correlation between different layers, and multi-scale representations, rendering the accurate information extraction of water bodies from remote sensing images still challenging. This study proposed a boundary guidance and cross-scale information interaction network (BGCIINet) for information extraction of water bodies from remote sensing images. First, this study proposed a boundary guidance (BG) module for the first time by combing the Sobel operator. This module can be used to effectively capture boundary cues in low-level features and efficiently embed these cues into a decoder to produce rich boundary information. Second, a cross-scale information interaction (CII) module was introduced to enhance the multi-scale representation capability of the network and facilitate information exchange between layers. Extensive experiments on two datasets demonstrate that the proposed method outperforms four state-of-the-art methods, offering rich boundary details and completeness under challenging scenarios. Therefore, the proposed method is more effective in extracting water body information from remote sensing images. This study will provide a valuable reference of methods for future research.

Keywords water body extraction      boundary guidance      cross-scale features      remote sensing images      semantic segmentation     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiaxue CHEN
Dongsheng XIAO
Hongyu CHEN
Cite this article:   
Jiaxue CHEN,Dongsheng XIAO,Hongyu CHEN. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023230     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/15
Fig.1  Overall framework of BGCIINet
Fig.2  Specific frame diagram of BG module
Fig.3  Specific frame diagram of CII module
参数 DeepGlobe LandCover
影像大小/像素 2 048×2 048 最大为9 000×9 500
分辨率/m 0.5 0.25和0.5
影像来源 卫星影像 航空影像
Tab.1  Details of DeepGlobe dataset and LandCover dataset
Tab.2  Some samples of the dataset
Fig.4  Visual feature maps before and after BG module
Fig.5  Visual feature maps before and after the CII module
方法 IoU F1 Precision Recall OA
Attention Unet 82.62 90.48 92.78 88.30 96.62
PSPNet 88.66 93.99 94.77 93.23 97.83
DANet 81.52 89.82 90.38 89.27 96.32
DeepLabV3+ 93.59 96.69 97.00 96.37 98.80
本文方法 94.67 97.26 97.76 96.77 99.01
Tab.3  Quantitative comparison on the DeepGlobe dataset (%)
方法 IoU F1 Precision Recall OA
Attention Unet 86.13 92.55 94.88 90.33 95.94
PSPNet 92.18 95.93 96.25 95.62 97.74
DANet 84.60 91.66 92.64 90.70 95.39
DeepLabV3+ 91.99 95.83 94.63 97.06 97.64
本文方法 95.41 97.65 97.30 98.01 98.68
Tab.4  Quantitative comparison on the LandCover dataset (%)
场景类型 影像 Attention Unet PSPNet DANet DeepLabV3+ 本文方法
低对比度、光谱相似
不规则水体
小型水体
类间相似性
类内异质性
Tab.5  Visualization results in different challenging scenarios
方法 参数量/106 浮点运
算数/109
模型大
小/MB
FPS/
(帧· s - 1)
Attention Unet 34.88 266.27 133.11 35.09
PSPNet 25.35 20.09 97.91 189.22
DANet 66.55 282.83 262.11 76.70
DeepLabV3+ 22.34 31.55 85.28 182.54
本文方法 21.95 48.45 83.82 114.49
Tab.6  Comparison of efficiency and complexity
方法 IoU/% F1/% OA/% 参数
量/106
浮点运
算数/109
基线网络 90.51 95.02 98.18 21.66 31.22
去除BG模块 92.78 96.25 98.64 21.76 47.21
去除CII模块 92.83 96.28 98.65 21.85 32.47
本文方法 94.67 97.26 99.01 21.95 48.45
Tab.7  Ablation experiment results
Fig.6  Visual analysis of module functions
[1] Wu Z, Lai X, Li K. Water quality assessment of rivers in Lake Chaohu basin (China) using water quality index[J]. Ecological Indicators, 2021,121:107021.
[2] 杨聪, 童蕾, 马乃进, 等. 洪湖水体和沉积物中抗生素的分布特征及其影响因素研究[J]. 安全与环境工程, 2022, 29(5):78-90.
[2] Yang C, Tong L, Ma N J, et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu Lake[J]. Safety and Environmental Engineering, 2022, 29(5):78-90.
[3] Verma U, Chauhan A, M M M P, et al. DeepRivWidth:Deep learning based semantic segmentation approach for river identification and width measurement in SAR images of Coastal Karnataka[J]. Computers & Geosciences, 2021,154:104805.
[4] 杜云艳, 周成虎. 水体的遥感信息自动提取方法[J]. 遥感学报, 1998, 2(4):264-269.
[4] Du Y Y, Zhou C H. Automatically extracting remote sensing information for water body[J]. Journal of Remote Sensing, 1998, 2(4):264-269.
[5] Koponen S, Pulliainen J, Kallio K, et al. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J]. Remote Sensing of Environment, 2002, 79(1):51-59.
[6] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[7] Xie C, Huang X, Zeng W, et al. A novel water index for urban high-resolution eight-band WorldView-2 imagery[J]. International Journal of Digital Earth, 2016, 9(10):925-941.
[8] Liu Q, Huang C, Shi Z, et al. Probabilistic river water mapping from landsat-8 using the support vector machine method[J]. Remote Sensing, 2020, 12(9):1374.
[9] Wang X, Ling F, Yao H, et al. Unsupervised sub-pixel water body mapping with sentinel-3 OLCI image[J]. Remote Sensing, 2019, 11(3):327.
[10] Weng L, Xu Y, Xia M, et al. Water areas segmentation from remote sensing images using a separable residual SegNet network[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):256.
[11] Guo H, He G, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images[J].ISPRS International Journal of Geo-Information, 2020, 9(4):189.
[12] Li M, Wu P, Wang B, et al. A deep learning method of water body extraction from high resolution remote sensing images with multisensors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:3120-3132.
[13] Dong S, Pang L, Zhuang Y, et al. Optical remote sensing water-land segmentation representation based on proposed SNS-CNN network[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.July 28 - August 2, 2019, Yokohama,Japan.IEEE,2019:3895-3898.
[14] Hu K, Li M, Xia M, et al. Multi-scale feature aggregation network for water area segmentation[J]. Remote Sensing, 2022, 14(1):206.
[15] Kang J, Guan H, Peng D, et al. Multi-scale context extractor network for water-body extraction from high-resolution optical remotely sensed images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,103:102499.
[16] Wang Z, Gao X, Zhang Y. HA-net:A lake water body extraction network based on hybrid-scale attention and transfer learning[J]. Remote Sensing, 2021, 13(20):4121.
[17] 张庆港, 张向军, 余海坤, 等. 一种轻量级网络模型的遥感水体提取方法[J]. 测绘科学, 2022, 47(11):64-72.
[17] Zhang Q G, Zhang X J, Yu H K, et al. A water extraction method for remote sensing with lightweight network model[J]. Science of Surveying and Mapping, 2022, 47(11):64-72.
[18] Zhang Z, Lu M, Ji S, et al. Rich CNN features for water-body segmentation from very high resolution aerial and satellite imagery[J]. Remote Sensing, 2021, 13(10):1912.
[19] 沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
[19] Shen J A, Ma M T, Song Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
[20] 林娜, 王玉莹, 郭江, 等. 基于SegNet_CRF的遥感影像水体提取方法[J]. 测绘与空间地理信息, 2023, 46(3):12-15,18.
[20] Lin N, Wang Y Y, Guo J, et al. A method of water extraction from remote sensing images based on SegNet_CRF[J]. Geomatics & Spatial Information Technology, 2023, 46(3):12-15,18.
[21] 李红林, 隋百凯, 叶燕萍, 等. 基于语义分割网络的GF-7号卫星数据水体信息提取[J]. 大坝与安全, 2022(4):50-58.
[21] Li H L, Sui B K, Ye Y P, et al. Water information extraction from GF-7 satellite data based on semantic segmentation network[J]. Dam & Safety, 2022(4):50-58.
[22] 刘佳典, 宋伟东, 朱洪波, 等. 改进U-Net模型的遥感影像水体提取研究[J]. 测绘科学, 2022, 47(8):230-239.
[22] Liu J D, Song W D, Zhu H B, et al. Research on water extraction from remote sensing images based on improved U-Net model[J]. Science of Surveying and Mapping, 2022, 47(8):230-239.
[23] Wang B, Chen Z, Wu L, et al. SADA-net:A shape feature optimization and multiscale context information-based water body extraction method for high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15:1744-1759.
[24] Boguszewski A, Batorski D, Ziemba-Jankowska N, et al. LandCover.ai:Dataset for automatic mapping of buildings,woodlands,water and roads from aerial imagery[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) June 19-25,2021, Nashville,TN,USA.IEEE,2021:1102-1110.
[25] Demir I, Koperski K, Lindenbaum D, et al.DeepGlobe 2018:A challenge to parse the earth through satellite images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 18-22,2018, Salt Lake City,UT,USA.IEEE,2018:172-17209.
[26] Oktay O, Schlemper J, Le Folgoc L, et al. Attention U-net:Learning where to look for the pancreas[EB/OL]. 2018:1804.03999.https://arxiv.org/abs/1804.03999v3.
url: https://arxiv.org/abs/1804.03999v3
[27] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) July 21-26,2017, Honolulu,HI,USA.IEEE,2017:6230-6239.
[28] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20,2019, Long Beach,CA,USA.IEEE,2019:3141-3149.
[29] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing,2018:833-851.
[1] LIU Chenchen, GE Xiaosan, WU Yongbin, YU Haikun, ZHANG Beibei. A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+[J]. Remote Sensing for Natural Resources, 2025, 37(1): 31-37.
[2] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[3] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[4] LI Shiqi, YAO Guoqing. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
[5] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[6] TAI Jiayi, SHEN Li, QIAO Wenfan, ZHOU Wuzhen. Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings[J]. Remote Sensing for Natural Resources, 2024, 36(3): 154-162.
[7] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[8] FENG Siwei, YANG Qinghua, JIA Weijie, WANG Mengfei, LIU Lei. Information extraction of inland surface water bodies based on optical remote sensing:A review[J]. Remote Sensing for Natural Resources, 2024, 36(3): 41-56.
[9] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[10] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[11] LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
[12] ZHAO Hui, CHEN Zhen, FENG Chaofan, ZHANG Tong, ZHAO Xuejing, ZHANG Zhaoxu. Monitoring of the area of Poyang Lake based on Landsat images and its relationship with the water level[J]. Remote Sensing for Natural Resources, 2024, 36(2): 198-206.
[13] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[14] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[15] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech