Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 1-14     DOI: 10.6046/zrzyyg.2024100
|
Monitoring 2018—2022 changes in lake levels across China using ICESat-2 data
JING Ruofan1,2,3(), LIAO Jingjuan1,2(), MA Shanmu1,2,3
1. Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
2. International Research Center of Big Data for Sustainable Development Goals,Beijing 100094,China
3. University of Chinese Academy of Sciences,Beijing 100049,China
Download: PDF(9311 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Satellite altimetry enables non-contact,large-scale Earth observation,providing technical support for monitoring changes in water levels of lakes where there is a lack of ground-based hydrological stations. The ICESat-2 laser altimeter features small footprints and high measurement accuracy,enjoying advantages in monitoring small-to medium-sized lakes. Therefore,this study extracted water level data from October 2018 to August 2022 for 1248 lakes across China based on ICESat-2 ATL08 data. The extracted data were validated using measured water level data from 18 lakes and Hydroweb data from 36 ones. Subsequently,based on the division of China's five major lake regions,this study analyzed variations in water levels of 957 lakes that were observed for over two years in at least four campaigns. The results show that the root mean square errors (RMSEs) between ICESat-2-derived and measured lake levels showed a minimum of 0.097 m. The cross-validation with Hydroweb data yielded a correlation coefficient of 0.95 and a minimum RMSE of 0.085 m. These results demonstrate the high precision and accuracy of the water level retrieval based on the ICESat-2 data. The lake levels on the Tibetan Plateau exhibited a slow rising trend,while those in northwestern China showed a declining trend. In eastern China,the water levels of large lakes displayed no significant variation trend,whereas those of small lakes showed pronounced fluctuations. Overall,the lake levels across China exhibited a gently rising trend. This study achieved high-precision measurement and monitoring of variations in lake levels across China,providing a scientific basis for water resource protection,ecological management,and the exploration of the responses of lake levels to human activities and climate change.

Keywords satellite altimetry      lake level      ICESat-2      change analysis      lake region of China     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruofan JING
Jingjuan LIAO
Shanmu MA
Cite this article:   
Ruofan JING,Jingjuan LIAO,Shanmu MA. Monitoring 2018—2022 changes in lake levels across China using ICESat-2 data[J]. Remote Sensing for Natural Resources, 2025, 37(5): 1-14.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024100     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/1
Fig.1  Overview of the study area
Fig.2  Flow chart of this study
Fig.3  Processing of ICESat-2 data of Hulun Lake
Fig.4  Profile of the transit track of Lake Darinor on April 21,2021
序号 湖泊名 重复水位数/个 重合水位日期范围 RMSE/m 相关系数
1 扎陵湖 22 2018年10月—2020年12月 0.097 0.881
2 鄂陵湖 21 2018年10月—2020年12月 0.195 0.894
3 太湖 18 2018年10月—2020年12月 0.462 0.366
4 青海湖 12 2018年12月—2019年12月 0.203 0.766
5 巢湖 10 2018年12月—2019年12月 0.830 0.365
6 乌梁素海 8 2018年10月—2020年10月 0.198 0.555
7 独山湖 7 2019年3月—2019年12月 0.270 0.771
8 南漪湖 6 2018年11月—2019年11月 0.398 0.932
9 石臼湖 6 2018年11月—2019年11月 0.241 0.981
10 阳澄湖 6 2018年10月—2019年12月 0.134 0.416
11 大官湖 6 2018年12月—2019年12月 0.384 0.417
12 菜子湖 5 2018年12月—2019年12月 0.320 0.774
13 高邮湖 4 2018年12月—2020年12月 0.045 0.978
14 微山湖 4 2019年4月—2019年12月 0.167 0.324
15 泸沽湖 3 2019年2月—2019年5月 0.019 0.966
16 洪泽湖 3 2019年6月—2019年12月 0.152 0.933
17 武昌湖 3 2019年1月—2019年10月 0.424 0.982
18 固城湖 3 2018年11月—2019年4月 0.139 0.996
Tab.1  Statistics for verification error using the in-situ data
Fig.5  Comparison of water levels from ICESat-2 and in-situ data
Fig.6  Comparison of water levers from ICESat-2 data and Hydroweb
Fig.7  Distribution of monitored lakes and the number of observations
Fig.8  Statistical of ICESat-2 observed data
湖泊面积
范围/km2
湖泊数量/个 总面积/km2 上升数量/个 上升面积/
km2
上升率/
(m·a-1
下降数量/个 下降面积/
km2
下降率/
(m·a-1
>1 000 4 9 673.41 3 8 672.84 0.207 1 1 000.57 -0.051
(500,1 000] 10 6 561.89 6 3 997.77 0.279 4 2 564.12 -0.146
(200,500] 29 9 698.25 14 4 938.49 0.239 15 4 759.76 -0.132
(100,200] 46 6 264.33 32 4 433.57 0.197 14 1 830.77 -0.120
(50,100] 69 4 956.55 40 2 980.10 0.165 29 1 976.45 -0.094
(10,50] 231 5 411.45 102 2 593.46 0.174 129 2 817.98 -0.148
≤10 345 1 477.06 146 641.12 0.141 199 835.94 -0.192
总计 734 44 042.94 343 28 257.35 0.212 391 15 785.59 -0.129
Tab.2  Trends in water levels of lakes of different sizes in the lake area of the Qinghai-Xizang Plateau
Fig.9  Distribution of lake level trends on the Qinghai-Xizang Plateau
流域名称 湖泊数/个 上升面积/km2 平均上升率/(m·a-1 下降面积/km2 平均下降率/(m·a-1
柴达木内流区 30 5 747.132 0.245 4 554.773 -0.111 4
羌塘高原内流区 532 21 259.077 0.205 9 11 143.659 -0.118 9
黄河源流域 27 148.091 0.114 3 1 295.693 -0.222 2
长江源流域 58 691.819 0.243 8 343.625 -0.047 5
西南国际河流域 73 371.611 0.067 3 2 280.361 -0.145 2
Tab.3  Trends in lake level changes in various basins on the Qinghai-Xizang Plateau
湖泊面积/
km2
湖泊数量/个 总面积/
km2
上升数量/个 上升面积/
km2
年均上升率/
(m·a-1
下降数量/个 下降面积/
km2
年均下降率/
(m·a-1
>1 000 1 2 457.42 0 0 0 1 2 457.42 -0.025
(500,1 000] 4 2 985.60 3 2 125.73 0.101 1 859.87 -0.034
(100,500] 26 5 010.93 23 4 259.28 0.275 3 751.65 -0.375
(50,100] 17 1 162.70 10 684.72 0.699 7 477.98 0.049
(10,50) 100 2 464.14 68 1 727.11 0.817 32 737.03 -0.604
总计 148 14 080.78 104 8 796.84 0.373 44 5 283.94 -0.234
Tab.4  Trends in water levels of lakes of different sizes in the Eastern Plains lake area
Fig.10  Distribution of lake level trends in the Eastern Plains lake area
流域名称 湖泊数/个 上升面积/km2 平均上升率/(m·a-1 下降面积/km2 平均下降率/(m·a-1
长江中下游流域 60 4 935.227 0.303 9 3 569.893 -0.165 6
黄河中下游流域 6 310.559 0.801 9 44.734 -0.783 0
淮河流域 55 2 896.429 0.336 5 1 292.278 -0.077 7
海河流域 19 615.876 0.878 5 161.389 -0.319 4
珠江流域 7 38.750 0.315 7 197.237 -2.331 9
Tab.5  Trends in lake level changes in various basins in the Eastern Plains lake area
Fig.11  Distribution of lake level trends in the Northeast Plains and Mountains lake area
Fig.12  Changes in water levels of typical lakes from ICESat-2 data
Fig.13  -2 Changes in water surface of typical lakes from 2018 to 2022
[1] 吴红波, 郭忠明, 毛瑞娟. ICESat-GLAS测高数据在长江中下游湖泊水位变化监测中的应用[J]. 资源科学, 2012, 34(12):2289-2298.
[1] Wu H B, Guo Z M, Mao R J. Monitoring lake water level changes in the middle and Lower Yangtze River Basin based on ICESat-GLAS altimetry data[J]. Resources Science, 2012, 34(12):2289-2298.
[2] 高乐, 廖静娟, 刘焕玲, 等. 卫星雷达测高的应用现状及发展趋势[J]. 遥感技术与应用, 2013, 28(6):978-983.
[2] Gao L, Liao J J, Liu H L, et al. Applying status and development tendency of satellite Radar altimeter[J]. Remote Sensing Technology and Application, 2013, 28(6):978-983.
[3] 赵云. 雷达高度计数据中国主要湖泊水位变化监测方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[3] Zhao Y. Method of monitoring water level change of main lakes in China with Radar altimeter data[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences), 2017.
[4] Chen J, Liao J. Monitoring lake level changes in China using multi-altimeter data (2016-2019)[J]. Journal of Hydrology, 2020, 590:125544.
[5] 王成, 习晓环, 骆社周, 等. 星载激光雷达数据处理与应用[M]. 北京: 科学出版社, 2015.
[5] Wang C, Xi X H, Luo S Z, et al. Data processing and application of spaceborne LiDAR[M]. Beijing: Science Press, 2015.
[6] 安德笼, 杨进, 武永斌, 等. ICESat-2激光测高卫星应用研究进展[J]. 海洋测绘, 2019, 39(6):9-15.
[6] An D L, Yang J, Wu Y B, et al. Current research progress and applications of ICESat-2 laser altimetry satellite[J]. Hydrographic Surveying and Charting, 2019, 39(6):9-15.
[7] Cooley S W, Ryan J C, Smith L C. Human alteration of global surface water storage variability[J]. Nature, 2021, 591(7848):78-81.
[8] Luo S, Song C, Zhan P, et al. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2[J]. CATENA, 2021, 200:105177.
[9] 张国庆, 王蒙蒙, 周陶, 等. 青藏高原湖泊面积、水位与水量变化遥感监测研究进展[J]. 遥感学报, 2022, 26(1):115-125.
[9] Zhang G Q, Wang M M, Zhou T, et al. Progress in remote sensing monitoring of lake area,water level,and volume changes on the Tibetan Plateau[J]. National Remote Sensing Bulletin, 2022, 26(1):115-125.
[10] 马山木, 甘甫平, 吴怀春, 等. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.
[10] Ma S M, Gan F P, Wu H C, et al. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.
[11] Wang X, Gong P, Zhao Y, et al. Water-level changes in China’s large lakes determined from ICESat/GLAS data[J]. Remote Sensing of Environment, 2013, 132:131-144.
[12] 张国庆, Xie H J, 姚檀栋, 等. 基于ICESat和Landsat的中国十大湖泊水量平衡估算[J]. 科学通报, 2013, 58(26):2664-2678.
[12] Zhang G Q, Xie H J, Yao T D, et al. Estimation of water balance of ten lakes in China based on ICESat and landsat[J]. Chinese Science Bulletin, 2013, 58(26):2664-2678.
[13] 王娜. 中国五大湖区湖泊生态系统结构及水生生物演化比较研究[D]. 南京: 南京大学, 2012.
[13] Wang N. Comparative study on the structure of lake ecosystem and the evolution of aquatic organisms in the five great lakes of China[D]. Nanjing: Nanjing University, 2012.
[14] Wan W, Long D, Hong Y, et al. A lake data set for the Tibetan Plateau from the 1960s,2005,and 2014[J]. Scientific Data, 2016, 3:160039.
[15] 吴红波, 王宁练, 郭忠明. ICESat-2/ATLAS测高数据在青海湖湖泊水位估计中的应用[J]. 水资源与水工程学报, 2021, 32(5):11-18,26.
[15] Wu H B, Wang N L, Guo Z M. Application of ICESat-2/ATLAS altimetry data to the estimation of the Qinghai Lake water level[J]. Journal of Water Resources and Water Engineering, 2021, 32(5):11-18,26.
[16] Tao S, Fang J, Zhao X, et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7):2281-2286.
doi: 10.1073/pnas.1411748112 pmid: 25646423
[17] Zhang G, Yao T, Chen W, et al. Regional differences of lake evolution across China during 1960—2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 2019, 221:386-404.
[1] WEI Jianing, LUO Kai, CHEN Yourong, LI Peigen, YANG Kang. Estimating the surface mass balance of the Greenland Ice Sheet based on remote sensing data and ice flux divergence[J]. Remote Sensing for Natural Resources, 2025, 37(2): 80-87.
[2] ZHU Yuxin, MAN Mengtian, WANG Yuhan, CHEN Dinghua, YANG Kang. Remote sensing-based bathymetry retrieval of supraglacial lakes on polar ice sheets using images from small optical satellite PlanetScope and ICESat-2 laser altimetry data[J]. Remote Sensing for Natural Resources, 2024, 36(4): 314-320.
[3] LIU Meiyan, NIE Sheng, WANG Cheng, XI Xiaohuan, CHENG Feng, FENG Baokun. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 210-216.
[4] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[5] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[6] MA Shanmu, GAN Fuping, WU Huaichun, YAN Bokun. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2022, 34(3): 164-172.
[7] WEI Haohan, XU Renjie, YANG Qiang, ZHOU Quanping. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
[8] LI Ru, ZHU Boqin, TONG Xiaowei, YUE Yuemin, GAN Huayang, WAN Sida. Change analysis in Hainan Dongzhai Wetland Reserve based on remote sensing data obtained during 2002-2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 149-155.
[9] WANG Jining, MENG Yonghui, ZHANG Lixia. Remote sensing monitoring and change analysis of Yellow River Estuary coastline in the past 42 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 188-193.
[10] CHEN Xue-ling, CHEN Shao-jie, DU Pei-jun, XIA Jun-shi. A Study of the Landscape Pattern Change of Longyan City Based on Multi-temporal Remote Sensing Images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 132-137.
[11] FENG Yong-jiu, LIU Dan, HAN Zhen. Shoreline Extraction and Change Analysis of the Jiuduansha Islands with the Support of Remote Sensing and GIS Technologies[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 65-69.
[12] XIE Bin, LI Xiang, YU Le, SHU Liang, ZHANG Deng-Rong. An Analysis of the Change of the Beijing—Hangzhou Grand Canal (Hangzhou Section) and Its Impact on the Industrial Pattern[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 76-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech