Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 65-69     DOI: 10.6046/gtzyyg.2012.01.12
Technology Application |
Shoreline Extraction and Change Analysis of the Jiuduansha Islands with the Support of Remote Sensing and GIS Technologies
FENG Yong-jiu, LIU Dan, HAN Zhen
College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
Download: PDF(1672 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  With the support of remote sensing and GIS technologies,the shoreline information of the Jiuduansha Wetland Nature Reserve in Shanghai obtained in 2001,2005 and 2008 was interpreted respectively through an ArcInfo embedded software,shorelineExtractor,which integrates unsupervised classifiers,map generalization,discrete surface features removal and shoreline tracking. The extracted shorelines were re-sampled at 30,90,150,210,and 270 m respectively to compute the fractal dimensions. A consequent analysis of the shoreline lengths,shoal areas and key positions experiencing growth was conducted in detail. The results demonstrate that there are remarkable differences between the positions of silt growth in three shoals of the Jiuduansha Islands,i.e. upper,middle and lower shoals. The silt growth is dramatically fast in northern upper shoal,northeastern and southwestern middle shoal,and northeastern and southwestern lower shoal. The growths of shoreline length and shore area have the same tendency,indicating a fast growth in upper shoal,a moderate growth in lower shoal and a slow growth in middle shoal. In addition,the fractal property of the Jiuduansha Island is evident, with high values of goodness-of-fit. The fractal dimension of the whole Jiuduansha Island was growing from 2001 to 2008, and the fractal dimensions of upper and middle shoals are less than the dimension of the whole Jiuduansha,whereas the fractal dimension of lower shoal is larger than that of the whole Jiuduansha.
Keywords Power planning      GIS      Planning database      Planning research      Planning management     
:  TP 79  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Qing-shuang
FU Zhong-liang
Cite this article:   
WU Qing-shuang,FU Zhong-liang. Shoreline Extraction and Change Analysis of the Jiuduansha Islands with the Support of Remote Sensing and GIS Technologies[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 65-69.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.12     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/65
[1] 赵玉灵,杨金中.浙东象山港岸线及潮滩变迁遥感调查[J].国土资源遥感,2007(4):114-117,121.
[2] 马小峰,赵冬至,邢小罡,等.海岸线卫星遥感提取方法研究[J].海洋环境科学,2007,26(2):185-169.
[3] 申家双,翟京生,郭海涛.海岸线提取技术研究[J].海洋测绘,2009,29(6):74-77.
[4] 王李娟,牛铮,赵德刚,等.基于ETM遥感影像的海岸线提取与验证研究[J].遥感技术与应用,2010,25(2):235-239.
[5] 欧阳越,种劲松.SAR图像海岸线检测算法综述[J].国土资源遥感,2007(2):1-3.
[6] Liu H,Sherman D J,Wang L,et al.Algorithmic Foundation and Software Tools for Extracting Shoreline Features from Remote Sensing Imagery and LiDAR Data[J].Journal of Geographic Information System,2011,3:99-119.
[7] Liu H X,Sherman D,Gu S G.Automated Extraction of Shorelines from Airborne Light Detection and Ranging Data and Accuracy Assessment Based on Monte Carlo Simulation[J].Journal of Coastal Research,2007,23(6):1359-1369.
[8] Boak E H,Turner I L.Shoreline Definition and Detection:A Review [J].Journal of Coastal Research,2005,21(4):688-703.
[9] 张朝阳,冯伍法,张俊华.基于色差的遥感影像海岸线提取[J].测绘学院学报,2005,22(4):61-64.
[10] Dellepiane S,De Laurentiis R,Giordano F.Coastline Extraction from SAR Images and a Method for the Evaluation of the Coastline Precision[J].Pattern Recognition Letters,2004,25(13):1461-1470.
[11] 严海兵,李秉柏,陈敏东.遥感技术提取海岸线的研究进展[J].地域研究与开发,2009,28(1):101-105.
[12] 李伟.基于数学形态学的边缘检测算法研究[J].计算机与数字工程,2008,36(11):20-22.
[13] 杜涛,张斌.用小波技术分析遥感图像确定岸线位置的研究[J].海洋科学,1999(4):19-21.
[14] 王常颖.基于数据挖掘的遥感影像海岸带地物分类方法研究[D].青岛:中国海洋大学,2009.
[15] 何茂兵,吴健平.基于多时相遥感数据的九段沙潮滩高程获取[J].长江流域资源与环境,2008,17(2):310-316.
[16] 陈家宽.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社,2003.
[17] 韩震,郭永飞,李睿,等.长江口淤泥质潮滩环形水边线信息提取方法研究[J].国土资源遥感,2010(4):64-66.
[18] 张华国,黄韦艮.基于分形的海岸线遥感信息空间尺度研究[J].遥感学报,2006,10(4):463-468.
[19] 冯永玖,刘妙龙,童小华.广东省公路交通网络分形空间特征研究[J].地球信息科学,2008,10(1):26-33.
[20] 冯永玖,刘妙龙,童小华.基于加权长度的交通网络分形维数[J].复杂系统与复杂性科学,2007,4(4):32-37.
[21] 朱晓华.地理空间信息的分形与分维[M].北京:测绘出版社,2007.
[22] 国家海洋信息中心.潮汐表:长江口至台湾海峡(2001,2005,2008)[M].济南:山东省地图出版社,海洋出版社,2001,2005,2008.
[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[6] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[7] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[8] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[9] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[10] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
[11] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Xuanchi CHEN, Rong CHEN, Yufeng WU, Yueyue WANG. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
[14] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[15] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech