Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 210-216     DOI: 10.6046/zrzyyg.2022478
|
Forest stock volume inversion based on ICESat-2 and Sentinel-2A data
LIU Meiyan1,2(), NIE Sheng2(), WANG Cheng2, XI Xiaohuan2, CHENG Feng1, FENG Baokun1
1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China
2. Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(6259 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Forest stock volume (FSV), a critical indicator in forestry surveys, plays a significant role in evaluating the health and carbon sequestration capacity of forests. Cooperative inversion using active and passive remote sensing data is an essential method for FSV inversion of large areas. Focusing on forests in Shangri-La, Yunnan Province, this study extracted feature variables from ICESat-2/ATLAS and Sentinel-2A images and then screened them through correlation analysis and collinearity diagnostics. Using the selected feature variables, this study constructed a Sentinel-2A variable set, an ICESat-2/ATLAS variable set, and a combined variable set. Based on the measured data of sample sites and the three feature variable sets, this study built linear and nonlinear regression models for FSV inversion using stepwise linear regression and the random forest method, respectively. Finally, this study performed accuracy verification and comparative analysis of the results: ① For the three variable sets, the random forest method yielded higher accuracy than the stepwise linear regression; ② The ICESat-2/ATLAS variable set exhibited higher inversion accuracy than the Sentinel-2A variable set under both regression methods; ③ Combining Sentinel-2A and ICESat-2/ATLAS variable sets, the random forest method yielded the highest inversion accuracy, with its coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE) of 0.7034, 84.78 m3/hm2, and 36.46%, respectively. Overall, compared to Sentinel-2A data, the inversion models based on ICESat-2/ATLAS data and multi-source remote sensing data can effectively improve the accuracy of FSV inversion and model stability.

Keywords forest stock volume      feature variable      random forest      multiple regression      ICESat-2/ATLAS      Sentinel-2A     
ZTFLH:  S758.57  
  TP79  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meiyan LIU
Sheng NIE
Cheng WANG
Xiaohuan XI
Feng CHENG
Baokun FENG
Cite this article:   
Meiyan LIU,Sheng NIE,Cheng WANG, et al. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 210-216.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022478     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/210
Fig.1  Distribution of satellite data and forest stock volume in the study area
蓄积量/
(m3·hm-2)
样地
数/个
最大值/
(m3·hm-2)
最小值/
(m3·hm-2)
均值/
(m3·hm-2)
[0,200) 134 193 3 96
[200,400) 43 369 201 286
≥400 28 666 400 475
Tab.1  Statistical information of forest stock volume
名称 描述 参数符号
h_canopy 估计地形表面以上路段所有单独树冠相对高度的98%。通过将冠层光子高度与估计的地形表面进行差分,计算出相对冠层高度 h_canopy
h_mean_
canopy
单个相对冠层高度的平均值 h_mean
h_max_
canopy
单个冠层高度最大值 h _ max
h_min_
canopy
单个冠层高度最小值 h _ min
n_seg_ph 每个陆地段内光子数 h_seg
dem_h 地理定位点最佳可用数字高程模型,m h_dem
terrain_
slope
地形的沿轨道坡度 h_slope
h_te_best_fit 每100 m路段中点位置的最佳地形高程,m h_ terrain
canopy_h_metrics 基于内插地面上方相对树冠高度累积分布的高度度量,高度指标按以下百分位数计算: 10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,共有18个 h_m (m=10,15,…,95)
Tab.2  Data product parameters of ICESat-2/ATL08
名称 公式 名称 公式
归一化植被指数NDVI N D V I = N I R - R N I R + R 增强型植被指数EVI E V I = 2.5 ( N I R - R ) N I R + 6 R - 7 B + 1
比值植被指数RVI R V I = N I R R 可见光抗大气指数VARI V A R I = G - R G + R + B
差值植被指数DVI D V I = N I R - R 大气抗阻植被指数ARVI A R V I = N I R - 2 ( R - B ) N I R + 2 ( R - B )
红绿植被指数RGVI R G V I = R - G R + G 土壤修正植被指数SAVI S A V I = ( 1 + L ) ( N I R - R ) ( N I R - R + L )
L=0.1,0.25,0.5
Tab.3  Vegetation index
名称 描述 参数符号
数据范围 灰度值的范围 Rani
均值 灰度值的平均值 Meai
方差 灰度值的变化程度 Vari
信息熵 纹理的复杂程度 Enti
偏斜 灰度值的变化频率 Skei
二阶均值 灰度值的平均值 Meani
二阶方差 灰度值的变化程度 Variance i
同质性 图像纹理的协同性 Homi
对比度 图像清晰度和纹理的沟纹深浅 Coni
异质性 相邻像元之间灰度值的差异大小 Disi
二阶信息熵 图像纹理的复杂程度和非均匀程度 Entropy i
二阶矩 图像灰度分布的均匀程度和纹理粗细程度 Seci
相关性 GLCM像元的相似程度 Cori
Tab.4  Texture feature parameter
变量集 逐步线性回归公式 R2
1 Y1=2.279-0.015Mean9+0.007RVI-
0.002 Hom11-0.023Con2-0.003Hom3-
0.004Sec2
0.406 9
2 Y2=0.111 702h_canopy +0.000 387h_dem-
2.978
0.590 1
3 Y3=0.092h_canopy -0.01Mean9+
0.042Variance11+0.005DVI-1.097
0.632 7
Tab.5  Stepwise linear regression model
Fig.2  Importance score
模型 变量集 R2 RMSE/
(m3·hm-2)
rRMSE/
%
Bias/
(m3·hm-2)
逐步线性回归 变量集1 0.406 9 146.39 62.96 -87.220
变量集2 0.590 1 118.44 50.94 -27.894
变量集3 0.632 7 110.33 47.45 20.923
RF 变量集1 0.525 0 108.05 46.47 -19.486
变量集2 0.694 8 86.50 37.20 -17.627
变量集3 0.703 4 84.78 36.46 -16.559
Tab.6  Precision comparison
Fig.3  Prediction fitting diagram of linear stepwise regression and RF model
[1] 陈新云, 李利伟, 刘承芳, 等. 热带原始森林类型分类和蓄积量遥感反演研究[J]. 林业资源管理, 2019(2):39-46.
[1] Chen X Y, Li L W, Liu C F, et al. Remote sensing inversion of classification and stocking volume of tropical virgin forest types based on multivariate data[J]. Forest Resources Management, 2019(2):39-46.
[2] 龙依, 蒋馥根, 孙华, 等. 基于HLS数据的森林蓄积量遥感反演[J]. 森林与环境学报, 2021, 41(6):620-628.
[2] Long Y, Jiang F G, Sun H, et al. Remote sensing inversion of forest volume based on HLS data[J]. Journal of Forest and Environment, 2021, 41(6):620-628.
[3] 李旺, 牛铮, 王成, 等. 机载LiDAR数据估算样地和单木尺度森林地上生物量[J]. 遥感学报, 2015, 19(4):669-679.
[3] Li W, Niu Z, Wang C, et al. Forest above-ground biomass estimation at plot and tree levels using airborne LiDAR data[J]. Journal of Remote Sensing, 2015, 19(4):669-679.
[4] 陈松, 孙华, 吴童, 等. 基于Sentinel-2与机载激光雷达数据的误差变量联立方程组森林蓄积量反演研究[J]. 中南林业科技大学学报, 2020, 40(12):44-53.
[4] Chen S, Sun H, Wu T, et al. Study on the forest volume inversion based on the simultaneous equations of error variables of Sentinel-2 and airborne LiDAR data[J]. Journal of Central South University of Forestry and Technology, 2020, 40(12):44-53.
[5] Wang W J, He H S, Thompson F R, et al. Changes in forest biomass and tree species distribution under climate change in the northeastern United States[J]. Landscape Ecology, 2017, 32(7):1399-1413.
doi: 10.1007/s10980-016-0429-z url: http://link.springer.com/10.1007/s10980-016-0429-z
[6] 刘雪莲, 欧绍龙, 陆双飞, 等. 基于Sentinel-1A微波遥感数据的森林蓄积量估测[J]. 西部林业科学, 2020, 49(6):128-136.
[6] Liu X L, Ou S L, Lu S F, et al. Estimation of forest volume based on Sentinel-1A microwave remote sensing data[J]. Journal of West China Forestry Science, 2020, 49(6):128-136.
[7] 孙忠秋, 高金萍, 吴发云, 等. 基于机载激光雷达点云和随机森林算法的森林蓄积量估测[J]. 林业科学, 2021, 57(8):68-81.
[7] Sun Z Q, Gao J P, Wu F Y, et al. Estimating forest stock volume via small-footprint LiDAR point cloud data and random forest algorithm[J]. Scientia Silvae Sinicae, 2021, 57(8):68-81.
[8] 宋涵玥, 舒清态, 席磊, 等. 基于星载ICESat-2/ATLAS数据的森林地上生物量估测[J]. 农业工程学报, 2022, 38(10):191-199.
[8] Song H Y, Shu Q T, Xi L, et al. Remote sensing estimation of forest above-ground biomass based on spaceborne LiDAR ICESat-2/ATLAS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10):191-199.
[9] Duncanson L, Neuenschwander A, Hancock S, et al. Biomass estimation from simulated GEDI,ICESat-2 and NISAR across environmental gradients in Sonoma County,California[J]. Remote Sensing of Environment, 2020, 242:11779.
[10] 刘蓉姣, 张加龙, 陈培高. 基于混合像元分解的香格里拉市高山松空间分布变化研究[J]. 西北林学院学报, 2021, 36(1):9-17.
[10] Liu R J, Zhang J L, Chen P G. Spatial distribution changes of the pinus densata forests in Shangri-La City based on mixed pixel decomposition[J]. Journal of Northwest Forestry University, 2021, 36(1):9-17.
[11] Magruder L A, Brunt K M, Alonzo M. Early ICESat-2 on-orbit geolocation validation using ground-based corner cube retro-reflectors[J]. Remote Sensing, 2020, 12(21):3653.
doi: 10.3390/rs12213653 url: https://www.mdpi.com/2072-4292/12/21/3653
[12] 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11):20200259.
[12] Zhu X X, Wang C, Xi X H, et al. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11):20200259.
doi: 10.3788/IRLA url: http://www.opticsjournal.net/Journals/irla.htm
[13] 徐晓雨, 孙华, 王广兴, 等. 基于GF-1与Landsat-8的康保县叶面积指数遥感反演研究[J]. 中南林业科技大学学报, 2018, 38(1):43-48.
[13] Xu X Y, Sun H, Wang G X, et al. Modeling LAI of Kangbao County using GF-1 and Landsat8 image[J]. Journal of Central South University of Forestry and Technology, 2018, 38(1):43-48.
[14] 王宗梅, 徐天蜀, 岳彩荣, 等. 基于哑变量的高山松蓄积量反演模型研究[J]. 林业资源管理, 2017(4):75-81.
[14] Wang Z M, Xu T S, Yue C R, et al. Application of dummy variable in the research of pinus densata stock volume inversion model[J]. Forest Resources Management, 2017(4):75-81.
[15] 董佳臣, 倪文俭, 张志玉, 等. ICESat-2植被冠层高度和地表高程数据产品用于森林高度提取的效果评价[J]. 遥感学报, 2021, 25(6):1294-1307.
[15] Dong J C, Ni W J, Zhang Z Y, et al. Performance of ICESat-2 ATL08 product on the estimation of forest height by referencing to small footprint LiDAR data[J]. National Remote Sensing Bulletin, 2021, 25(6):1294-1307.
doi: 10.11834/jrs.20219449 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20219449/
[16] 韦丽清. 短波红外高灵敏度成像关键技术与应用研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017.
[16] Wei L Q. Research of key technologies and application for high sensitivity short wave infrared imaging[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics,Chinese Academy of Sciences), 2017.
[17] Immitzer M, Stepper C, Böck S, et al. Use of Worldview-2 stereo imagery and national forest inventory data for wall-to-wall mapping of growing stock[J]. Forest Ecology and Management, 2016, 359:232-246.
doi: 10.1016/j.foreco.2015.10.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0378112715005745
[18] 周振超. 基于多源遥感数据的红树林遥感信息识别研究——以湛江自然保护区为例[D]. 长春: 吉林大学, 2019.
[18] Zhou Z C. Research on the identification of mangrove forest based on multi-source remote sensing data[D]. Changchun: Jilin University, 2019.
[19] 郎晓雪, 许彦红, 舒清态, 等. 香格里拉市云冷杉林蓄积量遥感估测非参数模型研究[J]. 西南林业大学学报(自然科学), 2019, 39(1):146-151.
[19] Lang X X, Xu Y H, Shu Q T, et al. Nonparametric model for remote sensing estimating the volume of sprucefir forest in Shangri-La[J]. Journal of Southwest Forestry University(Natural Sciences), 2019, 39(1):146-151.
[20] 杨沁雨, 王瑞, 胥辉. 基于森林资源二类调查数据的香格里拉市森林生物量二阶抽样优化[J]. 西南林业大学学报(自然科学), 2021, 41(6):160-167.
[20] Yang Q Y, Wang R, Xu H. Optimal design of second-order sampling for forest biomass in Shangri-La City based on the forest management inventory[J]. Journal of Southwest Forestry University(Natural Sciences), 2021, 41(6):160-167.
[21] 侯群群, 王飞, 严丽. 基于灰度共生矩阵的彩色遥感图像纹理特征提取[J]. 国土资源遥感, 2013, 25(4):26-32.doi:10.6046/gtzyyg.2013.04.05.
[21] Hou Q Q, Wang F, Yan L. Extraction of color image texture feature based on gray-level co-occurrence matrix[J]. Remote Sensing for Land and Resources, 2013, 25(4):26-32.doi:10.6046/gtzyyg.2013.04.05.
[22] 杨福芹, 李天驰, 冯海宽, 等. 基于无人机数码影像的冬小麦氮素营养诊断研究[J]. 福建农业学报, 2021, 36(3):369-378.
[22] Yang F Q, Li T C, Feng H K, et al. UAV digital image-assisted monitoring on nitrogen nutrition of winter wheat in the field[J]. Fujian Journal of Agricultural Sciences, 2021, 36(3):369-378.
[23] 冷建飞, 高旭, 朱嘉平. 多元线性回归统计预测模型的应用[J]. 统计与决策, 2016(7):82-85.
[23] Leng J F, Gao X, Zhu J P. Application of multivariate linear regression statistical prediction model[J]. Statistics and Decision, 2016(7):82-85.
[24] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[25] 邢晓语, 杨秀春, 徐斌, 等. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7):1312-1324.
doi: 10.12082/dqxxkx.2021.200605
[26] Sarker L R, Nichol J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011, 115(4):968-977.
doi: 10.1016/j.rse.2010.11.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710003299
[25] Xing X Y, Yang X C, Xu B, et al. Remote sensing estimation of grassland aboveground biomass based on random forest[J]. Journal of Geo-Information Science, 2021, 23(7):1312-1324.
[1] LU Xianjian, ZHANG Huanling, YAN Hongbo, LI Zhenbao, GUO Ziyang. A method for sugarcane information extraction based on multi-feature optimal selection of Sentinel-1/2 image data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 86-94.
[2] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[3] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[4] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[5] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[6] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[7] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[8] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[9] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[10] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[11] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[12] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
[13] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[14] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[15] WANG Xuejie, SHI Guoping, ZHOU Ziqin, ZHEN Yang. Revision of solar radiation product ERA5 based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2022, 34(2): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech