The leaf area index (LAI) is a critical parameter for the forest ecosystem. Improving the remote sensing estimation accuracy of the regional LAI of mountain forests at a low cost is of great significance for accurately determining the LAIs of forests and for further understanding the forest ecosystem. With spaceborne LiDAR ICESat-2/ATLAS data as a primary information source, this study investigated Shangri-La City in mountainous areas in southwestern China. Based on the remote sensing estimation model using random forest (RF) regression, RF hyperparameter optimization, and the data of 51 measured sample plots of LAI, this study analyzed the estimation effects of the model using accuracy evaluation indicators such as coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and median absolute error (MedAE). The results are as follows: The hyperparameter optimization of the RF regression model using a random surface search algorithm can significantly improve the estimation accuracy of LAI. The extracted characteristic parameters of ground spots showed high contribution and excellent effects in the LAI estimation of mountain forests. Therefore, they can be applied to the estimation of regional LAI of mountain forests. The RF regression model optimized using the random surface search algorithm yielded higher estimation accuracy. The estimation results were consistent with the forest distribution in the study area, indicating certain generality. Finally, this study determined that it is feasible to employ ICESat-2/ATLAS data products for LAI estimation, providing a reference for medium- to large-scale LAI estimation based on spaceborne LiDAR.
Lei XI,Qingtai SHU,Yang SUN, et al. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources,
2023, 35(3): 160-169.
Lin X J. Remote sensing diagnosis of forest canopy height and forest aboveground biomass based on ICESat-2 and GEDI[D]. Beijing: University of Chinese Academy of Sciences (Aerospace Information Research Institute,Chinese Academy of Sciences), 2021.
[4]
Moussavi M S, Abdalati W, Scambos T, et al. Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data:Implications for canopy height retrieval from future ICESat-2 data[J]. International Journal of Remote Sensing, 2014, 35(13):5263-5279.
doi: 10.1080/01431161.2014.939780
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2014.939780
[5]
Liu M S, Xing Y Q, Wu H B, et al. Study on mean forest canopy height estimation based on ICESat-GLAS waveforms[J]. Forest Research, 2014, 27(3):309-315.
Huang J P, Xing Y Q, Qin L. Review of noise filtering algorithm for photon data[J]. The International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, 42:105-110.
Zhang H, Li H Y, Li H J, et al. Accuracy evaluation of remote sensing elevation data in alpine mountains based on airborne LiDAR[J]. Remote Sensing Technology and Application, 2021, 36(6):1311-1320.
[14]
Neuenschwander A L, Magruder L A. The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems[J]. Remote Sensing, 2016, 8(12):1039.
doi: 10.3390/rs8121039
url: http://www.mdpi.com/2072-4292/8/12/1039
[15]
Narine L L, Popescu S, Neuenschwander A, et al. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data[J]. Remote Sensing of Environment, 2019, 224:1-11.
doi: 10.1016/j.rse.2019.01.037
Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote Sensing, 2019, 11(14):1634.
doi: 10.3390/rs11141634
url: https://www.mdpi.com/2072-4292/11/14/1634
Ghosh S M, Behera M D, Paramanik S. Canopy height estimation using Sentinel series images through machine learning models in a mangrove forest[J]. Remote Sensing, 2020, 12(9):1519.
doi: 10.3390/rs12091519
url: https://www.mdpi.com/2072-4292/12/9/1519
Ma S M, Gan F P, Wu H C, et al. Monitoring lake level changes on the Tibetan Plateau from 2018 to 2021 using ICESat-2 data[J]. Remote Sensing for Natural Resources, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.
doi: 10.6046/zrzyyg.2021329
Chen Y, Ma L, Yu D, et al. Improving leaf area index retrieval using multi-sensor images and stacking learning in subtropical forests of China[J]. Remote Sensing, 2021, 14(1):148.
doi: 10.3390/rs14010148
url: https://www.mdpi.com/2072-4292/14/1/148
Chen B, Pang Y, Li Z, et al. Ground and top of canopy extraction from photon-counting LiDAR data using local outlier factor with ellipse searching area[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9):1447-1451.
doi: 10.1109/LGRS.8859
url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
An M, Xing W, Han Y, et al. The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat[J]. Irrigation Science, 2021, 39(6):687-701.
doi: 10.1007/s00271-021-00745-z
Xia S, Wang C, Xi X H, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2[J]. Remote Sensing, 2014, 18(4):1199-1207.
Lu D J, Li D, Zhu X X, et al. Denoising and classification of ICESat-2 photon point cloud based on convolutional neural network[J] Journal of Geo-Information Science, 2021, 23(11):2086-2095.
[34]
Zhu X, Nie S, Wang C, et al. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting LiDAR data[J]. Remote Sensing, 2018, 10(12):1962.
doi: 10.3390/rs10121962
url: http://www.mdpi.com/2072-4292/10/12/1962
Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(4):110-117.
Zhou R, Yang C, Li E, et al. Object-based wetland vegetation classification using multi-feature selection of unoccupied aerial vehicle RGB imagery[J]. Remote Sensing, 2021, 13(23):4910.
doi: 10.3390/rs13234910
url: https://www.mdpi.com/2072-4292/13/23/4910
[41]
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python[J]. The Journal of Mmachine Learning Research, 2011, 12:2825-2830.
Li W, Niu Z, Shang R, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1,Sentinel-2 and Landsat8 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102163.
doi: 10.1016/j.jag.2020.102163
url: https://linkinghub.elsevier.com/retrieve/pii/S030324342030026X