Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 12-20     DOI: 10.6046/zrzyyg.2024104
|
Stacking-assisted DS-InSAR method for monitoring surface deformations in complex mining areas
LI Zhi1(), ZHANG Shubi1(), LI Minggeng2, CHEN Qiang3, BIAN Hefang1, LI Shijin1, GAO Yandong1, ZHANG Yansuo1, ZHANG Di1
1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2. China Railway Shanghai Design Institute Group Corporation Limited, Shanghai 200040, China
3. Yankuang energy Group Company Limited Jining No.3 coal mine, Jining 272000, China
Download: PDF(4768 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Interferometric Synthetic Aperture Radar (InSAR) faces the challenges of the insufficient number of monitoring points and low monitoring accuracy when applied to complex environments with dense vegetation and large-gradient surface deformation in a mining area. To address these challenges, this study proposed an improved distributed scatterer InSAR (DS-InSAR) method assisted by stacking technology. This method identified statistically homogenous pixels using a confidence interval hypothesis test and achieved phase optimization utilizing a phase triangulation algorithm. Subsequently, the residual phases were derived by removing the linear deformation phases determined via stacking-based simulation. This step contributed to sparse deformation phase fringes, thereby enhancing the accuracy of spatiotemporal filtering and three-dimensional phase unwrapping within the subsequent DS-InSAR processing framework. Finally, the simulated phases were compensated, and thus complete deformation fields were determined. By processing Sentinel-1A SAR images covering the Xinjulong Coal Mine from October 2015 to March 2016, this study interpreted the time-series surface deformation characteristics in the mining area during this period. The findings revealed three significant deformation sites in the mining area, with a maximum cumulative radar line-of-sight (LOS) deformation of up to -313 mm. Compared to conventional small Baseline Subset (SBAS) InSAR, the proposed method yielded more uniformly distributed monitoring points via inversion, with a density approximately 12.9 times higher. The root mean squared error (RMSE) of the inversion was approximately 6.82 mm relative to leveling data, representing an accuracy improvement of about 3.0 mm compared to the SBAS results.

Keywords Stacking      DS-InSAR      surface deformation      residual phase      mining area deformation monitoring     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi LI
Shubi ZHANG
Minggeng LI
Qiang CHEN
Hefang BIAN
Shijin LI
Yandong GAO
Yansuo ZHANG
Di ZHANG
Cite this article:   
Zhi LI,Shubi ZHANG,Minggeng LI, et al. Stacking-assisted DS-InSAR method for monitoring surface deformations in complex mining areas[J]. Remote Sensing for Natural Resources, 2025, 37(4): 12-20.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024104     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/12
Fig.1  Geographical location of study area
序号 主影像日期 辅影像日期 时间基线/d 垂直基线/m
1 20151003 20151015 12 77.60
2 20151015 20151027 12 76.98
3 20151027 20151120 24 -122.34
4 20151120 20151202 12 7.22
5 20151120 20151214 24 32.01
6 20151120 20151226 36 92.14
7 20151202 20151214 12 24.79
8 20151202 20151226 24 84.92
9 20151202 20160107 36 108.82
10 20151214 20151226 12 60.13
11 20151214 20160107 24 84.02
12 20151226 20160107 12 23.90
13 20160107 20160307 60 -77.03
14 20160307 20160331 24 -62.22
Tab.1  Interference pair space-time baseline
Fig.2  Technical flow chart
Fig.3  Time series monitoring results of the study area
Fig.4  Correlation analysis of deformation rate of the same name points
Fig.5  Comparison of fusion technology, SBAS and level
监测方法 最大误差/mm 平均误差/mm RMSE/mm
SBAS 28.07 7.25 9.79
融合方法 22.55 4.90 6.82
Tab.2  Comparative analysis of timing technical accuracy
Fig.6  Key deformation monitoring area
Fig.7  Time series data of eastern deformation region
Fig.8  Time series data of the northern deformation region
[1] 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术, 2021, 49(9):1-8.
[1] Wang G F, Ren S H, Pang Y H, et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 2021, 49(9):1-8.
[2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7):1949-1960.
[2] Xie H P, Wu L X, Zheng D Z. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7):1949-1960.
[3] Zhang G, Xu Z X, Chen Z W, et al. Predictable condition analysis and prediction method of SBAS-InSAR coal mining subsidence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14.
[4] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144.
[4] Zhu J J, Yang Z F, Li Z W. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144.
[5] 于冰, 王冰, 刘国祥, 等. 融合DT和SDFPT的时序InSAR矿区形变监测与分析[J]. 自然资源遥感, 2024, 36(1):14-25.doi: 10.6046/zrzyyg.2022378.
[5] Yu B, Wang B, Liu G X, et al. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR[J]. Remote Sensing for Natural Resources, 2024, 36(1):14-25.doi: 10.6046/zrzyyg.2022378.
[6] 李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5):769-779.
[6] Li T, Tang X M, Li S J, et al. Classification of basic deformation products of L-band differential interfero-metric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):769-779.
[7] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas:Differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191.
[8] Sandwell D T, Price E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204.
[9] Xu Y Z, Li T, Tang X M, et al. Research on the applicability of DInSAR,stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the Datong coalfield[J]. Remote Sensing, 2022, 14(14):3314.
[10] 吴琼, 葛大庆, 于峻川, 等, 广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术[J]. 测绘学报, 2022, 51(10):2046-2055.
[10] Wu Q, Ge D Q, Yu J C, et al. Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2046-2055.
[11] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
[12] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[13] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
[14] Zhao C J, Li Z, Tian B S, et al. A ground surface deformation monitoring InSAR method using improved distributed scatterers phase estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4543-4553.
[15] 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603.
[15] Jiang M, Ding X L, He X F, et al. FaSHPS-InSAR technique for distributed scatterers:A case study over the lost hills oil field,California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603.
[16] 蒋弥, 丁晓利, 李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报, 2018, 61(12):4767-4776.
[16] Jiang M, Ding X L, Li Z W. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776.
[17] Wang H N, Li K L, Zhang J, et al. Monitoring and analysis of ground surface settlement in mining clusters by SBAS-InSAR technology[J]. Sensors, 2022, 22(10):3711.
[18] Ma J Q, Yang J C, Zhu Z R, et al. Decision-making fusion of InSAR technology and offset tracking to study the deformation of large gradients in mining areas-Xuemiaotan mine as an example[J]. Frontiers in Earth Science, 2022, 10:962362.
[19] 高延东, 贾义琨, 李世金, 等. InSAR相位解缠最大流/最小割权值改进算法[J]. 测绘学报, 2024, 53(4):644-652.
[19] Gao Y D, Jia Y K, Li S J, et al. The improved max-flow/Min-cut weight algorithm for InSAR phase unwrapping[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4):644-652.
[20] Feng X M, Chen Z Q, Li G, et al. Improving the capability of D-InSAR combined with offset-tracking for monitoring glacier velocity[J]. Remote Sensing of Environment, 2023, 285:113394.
[1] JIN Tingting, XI Wenfei, QIAN Tanghui, GUO Junqi, HONG Wenyu, DING Zitian, GUI Fuyu. Exploring the spatial distribution of surface deformations along the China-Laos railway based on SBAS-InSAR technology: Taking the Jinghong section as an example[J]. Remote Sensing for Natural Resources, 2025, 37(4): 232-240.
[2] YU Bing, WANG Bing, LIU Guoxiang, ZHANG Guo, HU Yunliang, HU Jinlong. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR[J]. Remote Sensing for Natural Resources, 2024, 36(1): 14-25.
[3] JIN Xintian, WANG Shijie, ZHANG Lanjun, GAO Xingyue. InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations[J]. Remote Sensing for Natural Resources, 2024, 36(1): 26-34.
[4] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[5] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[6] YANG Xianhua, WEI Peng, LYU Jun, HAN Lei, SHI Haolin, LIU Zhi. Application of mining collapse recognition technology based on multi-source remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(2): 162-167.
[7] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[8] ZHANG Ling, LIU Bin, GE Daqing, GUO Xiaofang. Detecting tiny differential deformation of Tangshan urban active fault using multi-source SAR data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 114-120.
[9] Xiaobo ZHANG, Xuesheng ZHAO, Daqing GE, Bin LIU, Ling ZHANG, Man LI, Yan WANG. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique[J]. Remote Sensing for Land & Resources, 2018, 30(4): 200-205.
[10] GE Da-Qing, WANG Yan, FAN Jing-Hui, LIU Sheng-Wei, GUO Xiao-Fang, WANG Yi. A STUDY OF SURFACE DEFORMATION MONITORING USING DIFFERENTIAL SAR INTERFEROMETRY TECHNIQUE AND AN ANALYSIS OF ITS KEY PROBLEMS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 14-22.
[11] MU Jing-Qin, YAO Guo-Qing. TIME SERIES RADAR INTERFERMETRY METHOD FOR SURFACE DEFORMATION MONITORING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(3): 28-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech