Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 26-34     DOI: 10.6046/zrzyyg.2022497
|
InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations
JIN Xintian1,2,3(), WANG Shijie1,2,3,4(), ZHANG Lanjun1,2,3, GAO Xingyue1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Nation-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
4. Academician Expert Workstation of Gansu Dayu Jiuzhou Space Information Technology Co., Ltd., Lanzhou 730050, China
Download: PDF(13990 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Earthquake-induced surface deformations are characterized by large scales and extensive coverage, and the resultant secondary geological disasters significantly impact local infrastructure and engineering construction. Investigating the surface deformations caused by the Menyuan earthquake is critical for understanding the seismic deformation movement and identifying potential geological disasters. This study obtained the coseismic deformation field of the Menyuan earthquake using the differential interferometric synthetic aperture Radar (D-InSAR) technique. Based on the geometric relationships between the ascending descending passes, this study extracted the two-dimensional information of surface deformations induced by the Menyuan earthquake. The results show that the coseismic deformations occurred primarily at the intersection of Lenglongling and Tuolaishan faults. The line-of-sight (LOS) surface deformations from ascending and descending passes exhibited uplift of 0.40 m and 0.80 m and subsidence of -0.65 m and -0.70 m, respectively. As indicated by the analysis of two-dimensional deformation based on the ascending and descending LOS surface deformation results, the maximum amplitude of vertical deformations dominated by subsidence was -0.32 m and the maximum amplitude of horizontal deformation dominated by eastward motion was 0.87 m, suggesting significant horizontal seismic deformations and fault activity dominated by left-lateral strike-slip process. Based on the 21 scenes of Sentinel-1A SAR images covering the study area taken from the ascending pass, this study extracted the information on the surface deformations after the Mengyuan earthquake using the small baseline subset-interferometric synthetic aperture Radar (SBAS-InSAR) technique, determining the LOS time series and average deformation rates. The results show that from January 17, 2022 to September 26, 2022, the study area experienced relatively stable overall deformations and significant local deformations. The fault activity was identified as the primary factor affecting the surface deformations, with a maximum average deformation rate of 53 mm/a and a maximum deformation amplitude of 77 mm. The results of this study will provide technical support for earthquake disaster mitigation, emergency management, and sustainable socio-economic development.

Keywords surface deformation      InSAR      Menyuan earthquake      deformation monitoring     
ZTFLH:  TP79  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xintian JIN
Shijie WANG
Lanjun ZHANG
Xingyue GAO
Cite this article:   
Xintian JIN,Shijie WANG,Lanjun ZHANG, et al. InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations[J]. Remote Sensing for Natural Resources, 2024, 36(1): 26-34.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022497     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/26
Fig.1  Location of study area
序号 轨道
成像时间 轨道
方向
序号 轨道
成像时间 轨道
方向
1 33 2021-12-29 降轨 10 128 2022-05-17 升轨
2 33 2022-01-10 降轨 11 128 2022-05-29 升轨
3 128 2022-01-05 升轨 12 128 2022-06-10 升轨
4 128 2022-01-17 升轨 13 128 2022-06-22 升轨
1 128 2022-01-17 升轨 14 128 2022-07-04 升轨
2 128 2022-01-29 升轨 15 128 2022-07-16 升轨
3 128 2022-02-10 升轨 16 128 2022-07-28 升轨
4 128 2022-03-06 升轨 17 128 2022-08-09 升轨
5 128 2022-03-18 升轨 18 128 2022-08-21 升轨
6 128 2022-03-30 升轨 19 128 2022-09-02 升轨
7 128 2022-04-11 升轨 20 128 2022-09-14 升轨
8 128 2022-04-23 升轨 21 128 2022-09-26 升轨
9 128 2022-05-05 升轨
Tab.1  Basic parameters of the used SAR acquisitions
Fig.2  Technical flow chart
Fig.3  InSAR coseismic deformations of Menyuan earthquake
Fig.4  The two-dimensional deformation result of Menyuan earthquake
Fig.5  SAR observation schematic
Fig.6  Average deformation rate of the ground surface after the Menyuan earthquake
Fig.7  Time series cumulative diagram of surface deformation after the Menyuan earthquake
Fig.8  Feature point time series deformation
[1] 戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报, 2017, 25(4):1151-1164.
[1] Dai L X, Xu Q, Fan X M, et al. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 2017, 25(4):1151-1164.
[2] 韩用顺, 朱颖彦, 孔亚平, 等. 四川省汶川地震极重灾区次生山地灾害分布规律与发育趋势[J]. 中国地质灾害与防治学报, 2010, 21(4):14-21.
[2] Han Y S, Zhu Y Y, Kong Y P, et al. Distribution and development of secondary mountain hazards induced by the May 12,2008 Wenchuan earthquake in the ten most severely-afflicted counties[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(4):14-21.
[3] 许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
[3] Xu Q, Guo C, Dong X J. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
[4] 汪东, 来风兵, 陈孟禹, 等. 基于InSAR技术天山乌吐劲河谷同震形变遥感研究[J]. 国土资源遥感, 2019, 31(1):187-194.doi:10.6046/gtzyyg.2019.01.25.
[4] Wang D, Lai F B, Chen M Y, et al. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Natural Resources, 2019,(1):187-194.doi:10.6046/gtzyyg.2019.01.25.
[5] 董建军, 梅媛, 李昕, 等. 高海拔排土场边坡安全稳定性SBAS-InSAR监测[J]. 中国安全科学学报, 2022, 32(1):92-101.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.013
[5] Dong J J, Mei Y, Li X, et al. SBAS-InSAR monitoring of slope safety and stability of high altitude dumps[J]. China Safety Science Journal, 2022, 32(1):92-101.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.013
[6] 李为乐, 陈俊伊, 陆会燕, 等. 泸定Ms6.8地震对海螺沟冰川的影响应急分析[J]. 武汉大学学报(信息科学版), 2023, 48(1):47-57.
[6] Li W L, Chen J Y, Lu H Y, et al. Emergency analysis of the Impact of the Luding Ms6.8 earthquake on Hailuogou glacier[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1):47-57.
[7] Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential Radar interferometry:The Landers earthquake[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(b10):19617-19634.
[8] Han B, Yang C, Li Z, et al. Coseismic and postseismic deformation of the 2016 Mw6.0 Petermann ranges earthquake from satellite Radar observations[J]. Advances in Space Research, 2022, 69(1):376-385.
doi: 10.1016/j.asr.2021.10.043 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117721008036
[9] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7):1485-1519.
doi: 10.11947/j.AGCS.2022.20220224
[9] Li Z H, Zhu W, Yu C, et al. Interferometric synthetic aperture Radar for deformation mapping:Opportunities,challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1485-1519.
[10] 赵翊含, 侯蒙京, 冯琦胜, 等. 基于Landsat8和随机森林的青海门源天然草地地上生物量遥感估算[J]. 草业学报, 2022, 31(7):1-14.
doi: 10.11686/cyxb2021454
[10] Zhao Y H, Hou M J, Feng Q S, et al. Estimation of aboveground biomass in Menyuan grassland based on Landsat8 and random forest approach[J]. Acta Prataculturae Sinica, 2022, 31(7):1-14.
[11] 金鑫田, 王世杰, 姜鑫, 等. 2022年青海门源Mw6.9地震同震形变及断层滑动分布反演[J]. 地球物理学进展, 2022, 37(6):2267-2274.
[11] Jin X T, Wang S J, Jiang X, et al. Coseismic deformation and slip distribution of the Mw6.9 Menyuan,Qinghai earthquake revealed by Sentinel-1A SAR imagery[J]. Progress in Geophysics, 2022, 37(6):2267-2274.
[12] 刘庆宇, 马瑛, 程莉. 青海门源县土壤质量地球化学评价[J]. 地质与勘探, 2022, 58(3):609-618.
[12] Liu Q Y, Ma Y, Cheng L. Geochemical evaluation of soil quality in Menyuan County of Qinghai Province[J]. Geology and Exploration, 2022, 58(3):609-618.
[13] 姜程, 霍艾迪, 朱兴华, 等. 黄土水力侵蚀-滑坡-泥流灾害链的研究现状[J]. 自然灾害学报, 2019, 28(1):38-43.
[13] Jiang C, Huo A D, Zhu X H, et al. Research status of loess hydraulic erosion-landslide-mudflow chain[J]. Journal of Natural Disasters, 2019, 28(1):38-43.
[14] 戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12):1778-1786,1796.
[14] Dai K R, Zhuo G C, Xu Q, et al. Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide,Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12):1778-1786,1796.
[15] Wright T J, Parsons B E, Lu Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):169-178.
[16] 杨旺, 何毅, 张立峰, 等. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.
[16] Yang W, He Y, Zhang L F, et al. InSAR monitoring of 3D surface deformation in Jinchuan mining area,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.
[17] 韩守富, 褚洪义, 黄兆欢, 等. 基于升降轨InSAR矿区地表二维形变的获取[J]. 兰州大学学报(自然科学版), 2021, 57(1):47-53.
[17] Han S F, Chu H Y, Huang Z H, et al. Two-dimensional deformation acquisition of mining area using the ascending and descending orbit InSAR[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(1):47-53.
[18] 高宏伟, 史先琳, 陈晨, 等. 云南漾濞地震地表二维形变提取[J]. 昆明理工大学学报(自然科学版), 2022, 47(2):57-64.
[18] Gao H W, Shi X L, Chen C, et al. Two-dimensional surface deformation extraction of Yangbi earthquake in Yunnan[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2022, 47(2):57-64.
[19] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6):887-897.
[19] Li Z H, Han B Q, Liu Z J, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan,Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University,2022, 47(6):887-897.
[20] 于仪, 李雪, 孙振, 等. 2022年青海门源地震震源机制与同震滑动分布研究[J]. 大地测量与地球动力学, 2023, 43(1):46-51.
[20] Yu Y, Li X, Sun Z, et al. Investigation on focal mechanism and coseismic slip distribution for Menyuan earthquake in 2022[J]. Journal of Geodesy and Geodynamics, 2023, 43(1):46-51.
[21] 冯万鹏, 何骁慧, 张逸鹏, 等. 2022年青海门源Mw6.6地震的发震断层及孕震构造模式[J]. 科学通报, 2023, 68(z1):254-270.
[21] Feng W P, He X H, Zhang Y P, et al. Seismic faults of the 2022 Mw6.6 Menyuan,Qinghai earthquake and their implication for the regional seismogenic structures[J]. Chinese Science Bulletin, 2023, 68(z1):254-270.
[22] Gao F, Zielke O, Han Z, et al. Faulted landforms,slip-rate,and tectonic implications of the eastern Lenglongling fault,northeastern Tibetan Plateau[J]. Tectonophysics, 2022, 823:229195.
doi: 10.1016/j.tecto.2021.229195 url: https://linkinghub.elsevier.com/retrieve/pii/S0040195121004777
[23] 屈春燕, 单新建, 张国宏, 等. InSAR地震形变场与断层运动性质\走向及升降轨模式的关系研究[C]// 2014年中国地球科学联合学术年会——专题25: InSAR技术、 卫星热红外与地壳运动论文集, 2014:58-59.
[23] Qu C Y, Shan X J, Zhang G H, et al. Study on the relationship between InSAR seismic deformation field and the nature of fault motion \ orientation and lift-track pattern[C]// 2014 China Joint Geoscience Annual Conference - Topic 25:InSAR Technology,Satellite Thermal Infrared and Crustal Motion Proceedings, 2014:58-59.
[24] 温少妍, 单新建, 张迎峰, 等. 基于InSAR的青海大柴旦地震三维同震形变场获取与震源特征分析[J]. 地球物理学报, 2016, 59(3):912-921.
doi: 10.6038/cjg20160313
[24] Wen S Y, Shan X J, Zhang Y F, et al. Three-dimensional co-seismic deformation of the Da Qaidam,Qinghai earthquakes derived from D-InSAR data and their source features[J]. Chinese Journal of Geophysics, 2016, 59(3):912-921.
[25] 苏琦, 袁道阳, 谢虹. 祁连山东段石羊河流域及邻区地貌特征及其构造意义[J]. 地质论评, 2017, 63(1):7-20.
[25] Su Q, Yuan D Y, Xie H. Geomorphic features of the Shiyang River drainage basin and adjacent area in eastern Qilian Mountains and its insight into tectonic implications[J]. Geological Review, 2017, 63(1):7-20.
[26] 赵凌强, 孙翔宇, 詹艳, 等. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报, 2022, 65(4):1536-1546.
[26] Zhao L Q, Sun X Y, Zhan Y, et al. The seismogenic model of the Menyuan MS6.9 earthquake on January 8,2022,Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics, 2022, 65(4):1536-1546.
[27] Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan Fault,Gansu (China)[J]. Geophysical Journal International, 1995, 120(3):599-645.
doi: 10.1111/j.1365-246X.1995.tb01842.x url: https://academic.oup.com/gji/article-lookup/doi/10.1111/j.1365-246X.1995.tb01842.x
[28] 焦其松, 姜文亮, 李强, 等. GF-7卫星图像快速解析青海门源Ms6.9级地震的地表破裂带[J]. 遥感学报, 2022, 26(9):1895-1908.
[28] Jiao Q S, Jiang W L, Li Q, et al. Rapid emergency analysis of the surface rupture related to the Qinghai Menyuan Ms6.9 earthquake on January 8,2022,using GF-7 satellite images[J]. National Remote Sensing Bulletin, 2022, 26(9):1895-1908.
doi: 10.11834/jrs.20222043 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20222043/
[29] 郭鹏, 韩竹军, 安艳芬, 等. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学:地球科学, 2017, 47(5):617-630.
[29] Guo P, Han Z J, An Y F, et al. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Scientia Sinica(Tarrae), 2017, 47(5):617-630.
[1] CAI Jian’ao, MING Dongping, ZHAO Wenyi, LING Xiao, ZHANG Yu, ZHANG Xingxing. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1): 128-136.
[2] YU Bing, WANG Bing, LIU Guoxiang, ZHANG Guo, HU Yunliang, HU Jinlong. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR[J]. Remote Sensing for Natural Resources, 2024, 36(1): 14-25.
[3] MING Xiaoyong, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, LIN Junliang. Monitoring and analyzing land subsidence in Qinfang, Guangxi based on Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 35-48.
[4] ZHAO Xia, MA Xinyan, YU Qian, WANG Zhaobing. Application of high-resolution InSAR technique in monitoring deformations in the Beijing Daxing International Airport[J]. Remote Sensing for Natural Resources, 2024, 36(1): 49-57.
[5] WANG Ning, JIANG Decai, ZHENG Xiangxiang, ZHONG Chang. Assessing the susceptibility of slope geological hazards based on multi-source heterogeneous data: A case study of Longgang District, Shenzhen City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 122-129.
[6] XIAO Hui, LI Huitang, GU Yuehan, SHENG Qinghong. A quality-guided least squares phase unwrapping algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 25-33.
[7] YI Bangjin, HUANG Cheng, FU Tao, SUN Jixing, ZHU Baoquan, ZHONG Cheng. SBAS-InSAR-based detection of geological hazards in alpine gorge areas near the China-Myanmar border[J]. Remote Sensing for Natural Resources, 2023, 35(4): 186-191.
[8] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[9] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[10] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[11] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[12] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[13] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[14] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[15] ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai[J]. Remote Sensing for Natural Resources, 2022, 34(3): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech