Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 1-10     DOI: 10.6046/zrzyyg.2021371
|
Research advances in atmospheric correction of hyperspectral remote sensing images
KONG Zhuo(), YANG Haitao(), ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin
School of Space Information, University of Space Engineering, Beijing 101416, China
Download: PDF(1376 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Atmospheric correction is an important preprocessing step for hyperspectral remote sensing images. The atmospheric correction quality determines the application degree of hyperspectral remote sensing to a certain extent. First, this study analyzed the influence of the atmosphere on radiative transfer and summarized the inversion methods of aerosol optical thickness and water vapor in the atmosphere, indicating the main atmospheric factors affecting the quality of hyperspectral remote sensing images. Then, the influence of the atmosphere was demonstrated theoretically by clarifying the derivation process of the radiative transfer equation and the action mechanism of relevant parameters, indicating the main aspects of hyperspectral atmospheric correction. Furthermore, this study summarized the hyperspectral atmospheric correction methods formed in recent years, including methods based on empirical statistics and radiative transfer, and analyzed the study advances and development trends of hyperspectral atmospheric correction. Finally, this study forecasted the development of atmospheric correction of hyperspectral remote sensing images. This study will provide a certain reference for the engineering application and study of hyperspectral remote sensing.

Keywords hyperspectral remote sensing      atmospheric correction      radiative transfer equation      radiative transfer model      artificial neural network     
ZTFLH:  TP79  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhuo KONG
Haitao YANG
Fengjie ZHENG
Yang LI
Ji QI
Qinyu ZHU
Zhonglin YANG
Cite this article:   
Zhuo KONG,Haitao YANG,Fengjie ZHENG, et al. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021371     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/1
时间 卫星 光谱成像仪 国家 轨道高度/km 光谱范围/μm 谱段数 光谱分辨率/nm 空间分辨率/m 幅宽/km
2000年 EO-1 Hyperion 美国 705 0.40~2.50 242 10 30 7.7
2001年 PROBA-1 CHRIS ESA 615 0.40~1.05 62 11 17/34 13
2008年 HJ-1A HSI 中国 649 0.45~1.05 115 5 100 50
2008年 IMS-1 HYSI 印度 0.40~0.95 64 10 506 129.5
2016年 Resurs-P3 GSA 俄罗斯 477 0.40~1.10 216 5~10 25~30 30
2018年 GF-5 AHSI 中国 705 0.45~2.50 330 5/10 30 60
2018年 ISS DESIS 德国 397 0.40~1.00 235 2.5 30
2019年 ZY-1-02D HSI 中国 778 0.40~2.50 166 10/20 30 60
2019年 HysIS HysIS 印度 636 0.40~2.50 326 10 30 30
2021年 GF-5-02 AHSI 中国 705 0.45~2.50 330 5/10 30 60
Tab.1  Technical indicators of some spaceborne hyperspectral imagers at home and abroad
Fig.1  Radiative transfer process
Fig.2  Effects of different atmospheric molecular components on radiative transfer
模型 介绍
6S 6S是5S的改进版本,它将大气-地表系统耦合在大范围的大气、光谱和几何条件下,有效模拟了太阳辐射。采用连续散射阶算法,改善了散射效应的计算。并将大气进行分层,每层通过迭代辐射传输方程进行计算,可计算0.24~4.0 μm的地表反射率
MODTRAN MODTRAN是对LOWTRAN的改进模型,它几乎考虑了大气中所有大气分子、气溶胶及云的吸收和散射效应,并对分子吸收算法进行了改进,将光谱分辨率提高到了1 nm,可以计算波数为0.2 μm至无穷大的大气透射率和辐射。6S与MODTRAN是构成其他大部分辐射传输模型的基本模型,这2种模型模拟了辐射传输的物理机制,精度较高,但模拟不可能完全准确,且不能实现对光谱的打磨等后处理
ATREM ATREM是开发最早的高光谱大气辐射传输模型之一,它在Malkmus窄带模型推导大气透射光谱的基础上创建水汽查找表,并结合三波段比值法得到每个像元的水汽含量。采用6S代码模拟大气散射作用,最终结果是逐像元估计的水汽含量图及辐射校正图。目前已停止支持使用。ATREM由于没有考虑邻近效应的影响,因此在雾霾和高对比度杂波环境中不太准确
HATCH HATCH是在ATREM基础上的一种改进模型,主要改进包括采用k-相关方法从高分辨率透射分子吸收数据库(HITRAN)推导大气透射,使用了一个快速辐射传输方程求解器,并改进了水汽反演的三波段比值法,同时,它采用了光谱重校准方法,使得计算精度得到了提高。但与ATREM一样,HATCH同样没有考虑邻近效应的影响
ACORN ACORN移植了MODTRAN的代码,使用MODTRAN生成水汽查找表,然后根据高光谱数据进行最小二乘拟合。ACORN的一个关键改进是进行了全光谱拟合,以解决地表植被中水蒸气和液态水吸收重叠的问题。但ACORN在计算过程中同样没有考虑邻近效应
FLAASH FLAASH也是在MODTRAN基础上开发的辐射传输模型,它利用图像数据与大气特性,以物理方法精确推算地表反射率,并在计算过程中考虑了邻近效应的影响,同时能够校正倾斜观测导致的误差,计算精度得到了很大提升,目前已集成于ENVI软件中,已在高光谱遥感中得到了广泛的应用。但FLAASH计算结果中可能会出现负反射率,且不能进行有效改善
ATCOR ATCOR使用了MODTRAN的辐射传输代码和HITRAN数据库,能够很好地处理邻近效应,ATCOR3及之后版本可支持高光谱图像运算,在机载高光谱的大气校正中应用较为广泛,而在卫星遥感中适用于处理中小视场卫星图像
Tab.2  Common adiative transfer models
[1] 陶伟. 基于Hyperion高光谱数据的城市地物识别与分类研究[D]. 杭州: 浙江大学, 2013.
[1] Tao W. Urban feature identification and classification based on Hyperion hyperspectral remote sensing data[D]. Hangzhou: Zhejiang University, 2013.
[2] Sedaghat A, Mokhtarzade M, Ebadi H. Uniform robust scale-invariant feature matching for optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4516-4527.
doi: 10.1109/TGRS.2011.2144607 url: http://ieeexplore.ieee.org/document/5782957/
[3] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2004:8-9,161-162.
[3] Zhao Y S. The principle and method of analysis of remote sensing application[M]. Beijing: Science Press, 2004:8-9,161-162.
[4] 童庆禧, 张兵, 郑兰芬. 高光谱遥感——原理、技术与应用[M]. 北京: 高等教育出版社, 2006:67-69.
[4] Tong Q X, Zhang B, Zheng L F. Hyperspectral remote sensing[M]. Beijing: Higher Education Press, 2006:67-69.
[5] Schaepman M E, Ustin S L, Plaza A J, et al. Earth system science related imaging spectroscopy:An assessment[J]. Remote Sensing of Environment, 2009, 113(s1):123-137.
[6] 梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001:8-9.
[6] Mei A X, Peng W L, Qin Q M, et al. Introduction to remote sensing[M]. Beijing: Higher Education Press, 2001:8-9.
[7] 周婷婷. 遥感影像辐射校正研究与应用[D]. 福州: 福建师范大学, 2010.
[7] Zhou T T. Research and applications of remote sensing radiometric correction[D]. Fuzhou: Fujian Normal University, 2010.
[8] Goetz A, Vane G, Solomon J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704):1147-1153.
pmid: 17735325
[9] Katse V I L, Prikhach A S, Zege E P, et al. A robust atmospheric correction procedure for determination of spectral reflectance of terrestrial surfaces from satellite spectral measurements[J]. Remote Sensing, 2021, 13(9):1831.
doi: 10.3390/rs13091831 url: https://www.mdpi.com/2072-4292/13/9/1831
[10] 王浩天, 汪源, 袁强强. 2008—2016年MODIS多角度大气校正气溶胶产品在中国的时空分布及变化趋势[J]. 遥感技术与应用, 2021, 36(1):1-12.
[10] Wang H T, Wang Y, Yuan Q Q. Validation and spatiotemporal analysis of MODIS multi-angle atmospheric calibration aerosol products in China from 2008 to 2016[J]. Remote Sensing Technolo-gy and Application, 2021, 36(1):1-12.
[11] 黄红莲, 提汝芳, 张冬英, 等. 高分五号卫星偏振遥感陆地上空气溶胶光学厚度[J]. 红外与毫米波学报, 2020, 39(4):454-461.
[11] Huang H L, Ti R F, Zhang D Y, et al. Inversion of aerosol optical depth over land from directional polarimetric camera onboard Chinese Gaofen-5 satellite[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4):454-461.
[12] Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance[J]. Journal of Geophysical Research Atmospheres, 2007, 112:D13211.
[13] Diner D J, Martonchik J V, Kahn R A, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sensing of Environment, 2005, 94(2):155-171.
doi: 10.1016/j.rse.2004.09.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704002937
[14] 王中挺, 厉青, 王桥, 等. 利用深蓝算法从HJ-1数据反演陆地气溶胶[J]. 遥感学报, 2012, 16(3):596-610.
[14] Wang Z T, Li Q, Wang Q, et al. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm[J]. Journal of Remote Sensing, 2012, 16(3):596-610.
[15] Schlaepfer D, Borel C C, Keller J, et al. Atmospheric precorrected differential absorption technique to retrieve columnar water vapor[J]. Remote Sensing of Environment, 1998, 65(3):353-366.
doi: 10.1016/S0034-4257(98)00044-3 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425798000443
[16] Suomalainen J, Oliveira R A, Hakala T, et al. Direct reflectance transformation methodology for drone-based hyperspectral imaging[J]. Remote Sensing of Environment, 2021, 266:112691.
doi: 10.1016/j.rse.2021.112691 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425721004119
[17] Schott J R. Remote sensing:The image chain approach[M]. Oxford University Press on Demand, 2007:42-56.
[18] 毛克彪, 覃志豪. 大气辐射传输模型及MODTRAN中透过率计算[J]. 测绘与空间地理信息, 2004(4):1-3.
[18] Mao K B, Qin Z H. The transmission model of atmospheric radiation and the computation of transmittance of MODTRAN[J]. Geomatics and Spatial Information Technology, 2004(4):1-3.
[19] Ran W A, Jagab C, Rm A, et al. Errors associated with atmospheric correction methods for airborne imaging spectroscopy: Implications for vegetation indices and plant traits[J]. Remote Sensing of Environment, 2021, 265:112663.
doi: 10.1016/j.rse.2021.112663 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425721003837
[20] Kruse F A. Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder,CO[C]// Proceedings 13th JPL Airborne Geoscience Workshop. Pasadena: JPL Publication, 2004.
[21] Pathak V N, Pandya M R, Shah D B, et al. Inter comparison of atmospheric correction models-SACRS2, FLAASH and 6SV using resourcesat-2 AWiFS data[C]// International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2014:881-884.
[22] 吴晓明. 地基Headwall高谱影像大气校正方法[J]. 空间科学学报, 2019, 39(4):537-543.
[22] Wu X M. Atmospheric correction method for ground-based Headwall hyperspectral imagery[J]. Chinese Journal of Space Science, 2019, 39(4):537-543.
[23] 刘梓钦, 赵世湖, 裴亮, 等. GF-5卫星高光谱数据大气校正反射率精度评价[J]. 遥感信息, 2021, 36(3):93-98.
[23] Liu Z Q, Zhao S H, Pei L, et al. Precision evaluation on atmospheric correction reflectance of GF-5 satellite hyperspectral data[J]. Remote Sensing Information, 2021, 36(3):93-98.
[24] Kruse F A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains,Nevada,and California[J]. Remote Sensing of Environment, 1988, 24(1):31-51.
doi: 10.1016/0034-4257(88)90004-1 url: https://linkinghub.elsevier.com/retrieve/pii/0034425788900041
[25] Roberts D A, Yamaguchi Y, Lyon R. Comparison of various techniques for calibration of AIS data[C]// Proceedings of 2nd AIS workshop, Pasadena: JPL Publication 86-35, 1986:21-30.
[26] Teillet P M, Fedosejevs G. On the dark target approach to atmospheric correction of remotely sensed data[J]. Canadian Journal of Remote Sensing, 1995, 21(4):374-387.
doi: 10.1080/07038992.1995.10855161 url: https://www.tandfonline.com/doi/full/10.1080/07038992.1995.10855161
[27] Hall F G, Strebel D E, Nickeson J E, et al. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images[J]. Remote Sensing of Environment, 1991, 35(1):11-27.
doi: 10.1016/0034-4257(91)90062-B url: https://linkinghub.elsevier.com/retrieve/pii/003442579190062B
[28] Conel J E, Green R O, Vane G, et al. AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance[C]// Proceedings of the 3rd, Airborne Imaging Spectrometer Data Analysis Workshop.Pasadena,CA:JPL Publication 87-30, 1987:18-47.
[29] Bernstein L S, Ratkowski A J. Validation of the quick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery[J]. Proceedings of Spie the International Society for Optical Engineering, 2005, 5806:668-678.
[30] Ientilucci E J, Adler-Golden S. Atmospheric compensation of hyperspectral data:An overview and review of in-scene and physics-based approaches[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):31-50.
doi: 10.1109/MGRS.2019.2904706
[31] Sun J, Xu F, Cervone G, et al. Automatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174:117-131.
doi: 10.1016/j.isprsjprs.2021.02.007 url: https://linkinghub.elsevier.com/retrieve/pii/S092427162100040X
[32] 赵祥, 梁顺林, 刘素红, 等. 高光谱遥感数据的改正暗目标大气校正方法研究[J]. 中国科学(D辑:地球科学), 2007(12):1653-1659.
[32] Zhao X, Liang S L, Liu S H, et al. Correction of hyperspectral remote sensing data atmospheric correction method for dark targets[J]. Science in China(Series D), 2007(12):1653-1659.
[33] 郑求根, 权文婷. 基于暗像元的Hyperion高光谱影像大气校正[J]. 光谱学与光谱分析, 2010, 30(10):2710-2713.
[33] Zheng Q G, Quan W T. Application of dark pixels atmospheric correction algorithm to Hyperion imageries[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2710-2713.
[34] 伊丕源, 刘原麟, 武鼎, 等. 顾及时间因子的航空高光谱影像辐射归一化校正[J]. 科学技术与工程, 2021, 21(20):8342-8349.
[34] Yi P Y, Liu Y L, Wu D, et al. Impact analysis of time variation in atmospheric correction of airborne hyperspectral imagery[J]. Science Technology and Engineering, 2021, 21(20):8342-8349.
[35] Wang C, Myint S W. A simplified empirical line method of radiometric calibration for small unmanned aircraft systems-based remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):1876-1885.
doi: 10.1109/JSTARS.2015.2422716 url: https://ieeexplore.ieee.org/document/7098353/
[36] 董连凤. 高光谱影像预处理技术研究[D]. 西安: 长安大学, 2007.
[36] Dong L F. Study on the hyperspectral image preprocessing[D]. Xi’an: Chang’an University, 2007.
[37] Hadjit H, Oukebdane A, Belbachir A H. Atmospheric correction of earth-observation remote sensing images by Monte Carlo method[J]. Journal of Earth System Science, 2013, 122(5):1219-1235.
doi: 10.1007/s12040-013-0337-4 url: http://link.springer.com/10.1007/s12040-013-0337-4
[38] Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery[J]. International Journal of Remote Sensing, 1988, 9(8):1357-1381.
doi: 10.1080/01431168808954942 url: https://www.tandfonline.com/doi/full/10.1080/01431168808954942
[39] Xian G, Homer C. Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods[J]. Remote Sensing of Environment, 2010, 114(8):1676-1686.
doi: 10.1016/j.rse.2010.02.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710000878
[40] 郑伟, 曾志远. 遥感图像大气校正方法综述[J]. 遥感信息, 2004(4):66-70.
[40] Zheng W, Zeng Z Y. A review on methods of atmospheric correction for remote sensing images[J]. Remote Sensing Information, 2004(4):66-70.
[41] Zoran M, Stefan S. Atmospheric and spectral corrections for estimating surface albedo from satellite data[J]. Journal of Optoelectronics and Advanced Materials, 2006, 8(1):247-251.
[42] Adler-Golden S M, Matthew M W, Bernstein L S, et al. Atmospheric correction for shortwave spectral imagery based on MODTRAN4[C]// Proceedings of SPIE. Denver: The International Society for Optical Engineering, 1999:61-69.
[43] Gao B C, Heidebrecht K B, Goetz A. Derivation of scaled surface reflectances from AVIRIS data[J]. Remote Sensing of Environment, 1993, 44(2-3):165-178.
doi: 10.1016/0034-4257(93)90014-O url: https://linkinghub.elsevier.com/retrieve/pii/003442579390014O
[44] Zheng Q, Bruce C K, Alexander F H G. The high accuracy atmospheric correction for hyperspectral data (HATCH) model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1223-1231.
doi: 10.1109/TGRS.2003.813125 url: http://ieeexplore.ieee.org/document/1220230/
[45] Craig J M. Performance assessment of ACORN atmospheric correction algorithm[C]// Proceedings of SPIE. Orlando: The International Society for Optical Engineering, 2002:438-449.
[46] Cooley T, Anderson G P, Felde G W, et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation[C]// Proceeding of International Geoscience and Remote Sensing Symposium(IGARSS).IEEE, 2002:1414-1418.
[47] Balthazar V, Vanacker V, Lambin E F. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas[J]. International Journal of Applied Earth Observations and Geoinformation, 2012, 18:436-450.
[48] Santini F, Palombo A. Physically based approach for combined atmospheric and topographic corrections[J]. Remote Sensing, 2019, 11(10):1218.
doi: 10.3390/rs11101218 url: https://www.mdpi.com/2072-4292/11/10/1218
[49] 郭飞. 基于MODTRAN的高光谱快速大气校正方法[J]. 现代电子技术, 2015, 38(10):23-27.
[49] Guo F. A fast hyperspectral atmospheric correction method based on MODTRAN[J]. Modern Electronics Technique, 2015, 38(10):23-27.
[50] 佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2):22-28.doi:10.6046/gtzyyg.2015.02.04.
doi: 10.6046/gtzyyg.2015.02.04
[50] Dian Y Y, Fang S H, Xu Y R. An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content[J]. Remote Sensing for Land and Resources, 2015, 27(2):22-28.doi:10.6046/gtzyyg.2015.02.04.
doi: 10.6046/gtzyyg.2015.02.04
[51] 胡顺石, 张立福, 佘晓君, 等. 遥感影像大气校正通用查找表的设计与插值算法[J]. 遥感学报, 2014, 18(1):45-60.
[51] Hu S S, Zhang L F, She X J, et al. Design and interpolation of ageneral look-up table for remote sensing image atmospheric correction[J]. Journal of Remote Sensing, 2014, 18(1):45-60.
[52] Hsu N C, Jeong M J, Bettenhausen, et al. Enhanced deep blue aerosol retrieval algorithm: The second generation[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(16):9296-9315.
doi: 10.1002/jgrd.50712 url: http://doi.wiley.com/10.1002/jgrd.50712
[53] Lipponen A, Mielonen T, Pitknen M R A, et al. Bayesian dark target algorithm for MODIS AOD retrieval over land[J]. Atmospheric Measurement Techniques, 2018, 11(3):1-27.
doi: 10.5194/amt-11-1-2018 url: https://amt.copernicus.org/articles/11/1/2018/
[54] Kuter S, Weber G W, Akyürek Z, et al. Inversion of top of atmospheric reflectance values by conic multivariate adaptive regression splines[J]. Inverse Problems in Science and Engineering, 2015, 23(4):651-669.
doi: 10.1080/17415977.2014.933828 url: https://www.tandfonline.com/doi/full/10.1080/17415977.2014.933828
[55] Thompson D R, Vijay N, Green R O, et al. Optimal estimation for imaging spectrometer atmospheric correction[J]. Remote Sensing of Environment, 2018, 216:355-373.
doi: 10.1016/j.rse.2018.07.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718303304
[56] Wei J, Yu X, Lee Z, et al. Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters[J]. Remote Sensing of Environment, 2020, 250:112029.
doi: 10.1016/j.rse.2020.112029 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425720303990
[57] Gossn J I, Frouin R, Dogliotti A I. Atmospheric correction of satellite optical imagery over the Río de la Plata highly turbid waters using a SWIR-based principal component decomposition technique[J]. Remote Sensing, 2021, 13(6):1050.
doi: 10.3390/rs13061050 url: https://www.mdpi.com/2072-4292/13/6/1050
[58] Schroeder T, Behnert I, Schaale M, et al. Atmospheric correction algorithm for MERIS above case-2 waters[J]. International Journal of Remote Sensing, 2007, 28(7/8):1469-1486.
doi: 10.1080/01431160600962574 url: https://www.tandfonline.com/doi/full/10.1080/01431160600962574
[59] 刘安伟. 基于高光谱影像的大气参数反演和大气校正[D]. 西安: 西安科技大学, 2016.
[59] Liu A W. Atmospheric parameter inversion and atmospheric radiative correction based on hyperspectral image[D]. Xi’an: Xi’an University of Science and Technology, 2016.
[60] Xu F, Cervone G, Franch G, et al. Multiple geometry atmospheric correction for image spectroscopy using deep learning[J]. Journal of Applied Remote Sensing, 2020, 14(2):024518.
[61] Pyo J C, Duan H, Ligaray M, et al. An integrative remote sensing application of stacked autoencoder for atmospheric correction and cyanobacteria estimation using hyperspectral imagery[J]. Remote Sensing, 2020, 12(7):1073.
doi: 10.3390/rs12071073 url: https://www.mdpi.com/2072-4292/12/7/1073
[62] Vanonckelen S, Lhermitte S, Rompaey A V. The effect of atmospheric and topographic correction methods on land cover classification accuracy[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 24(1):9-21.
doi: 10.1016/j.jag.2013.02.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243413000184
[63] Zhang H, Yuan Y, Xu Y, et al. Remote sensing method for detecting green tide using HJ-CCD top-of-atmosphere reflectance[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102:102371.
doi: 10.1016/j.jag.2021.102371 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243421000787
[1] GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin[J]. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
[2] WANG Jie, WANG Guanghui, LIU Yu, QI Jianwei, ZHANG Tao. Construction of new vegetation water index based on PROSPECT-VISIR model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 56-62.
[3] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[6] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[7] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[8] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[9] GU Yanchun, MENG Qingyan, HU Die, ZHOU Xiaocheng. Analysis of environmental effects of industrial thermal anomalies[J]. Remote Sensing for Land & Resources, 2020, 32(4): 190-198.
[10] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[11] Zhenyu SHEN, Xiaohong GAO, Min TANG. Comparison and accuracy verification for atmospheric correction of SPOT6 image in high altitude complex terrain area[J]. Remote Sensing for Land & Resources, 2020, 32(1): 81-89.
[12] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[13] Ling CHEN, Li CHEN, Wei LI, Jianyu LIU. Atmospheric correction of Worldview3 image based on FLAASH model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 26-31.
[14] Piyuan YI, Hanbo LI, Peng TONG, Yingjun ZHAO, Chuan ZHANG, Feng TIAN, Yongfei CHE, Wenhuan WU. Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor[J]. Remote Sensing for Land & Resources, 2019, 31(2): 66-72.
[15] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech