Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 62-72     DOI: 10.6046/zrzyyg.2024286
|
A sea-land segmentation method combining contextual semantic information and edge features
WEN Tiantian1(), PU Yunwei1,2(), ZHAO Wenxiang1
1. Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China
2. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China
Download: PDF(5550 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In optical remote sensing images with complex scenes and rich land cover information,the sea-land segmentation faces challenges such as low positioning accuracy and blurred edges. Therefore,this paper proposed a deep convolutional network model and a sea-land segmentation method that integrate contextual semantic information and edge features. First,the rich target semantic information was extracted from remote sensing images using the FusionNet semantic segmentation network module. Then,multi-scale and hierarchical contextual semantic features were extracted from the segmentation network using the enhanced atrous spatial pyramid pooling (ASPP) module and contextual attention module. Additionally,an edge extraction sub-network was built to extract multi-scale edge features. Finally,the semantic features and edge features were combined through a fusion module,thereby achieving accurate sea-land segmentation. This method was tested with two typical representative datasets. The results showed that this method achieved an overall prediction accuracy of 98.21%,an F1 score of 97.64%,and a boundary F1 score of 89.36%,all significantly outperforming other models. Particularly in complex backgrounds,this method can effectively improve the accuracy of segmentation and edge detection,demonstrating definite advantages in the segmentation of artificial coastlines and ports.

Keywords sea-land segmentation      edge extraction      semantic segmentation      multi-task learning      contextual attention module     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tiantian WEN
Yunwei PU
Wenxiang ZHAO
Cite this article:   
Tiantian WEN,Yunwei PU,Wenxiang ZHAO. A sea-land segmentation method combining contextual semantic information and edge features[J]. Remote Sensing for Natural Resources, 2025, 37(5): 62-72.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024286     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/62
Fig.1  Structure of ES-Net model
Fig.2  Semantic segmentation module
Fig.3  ASPP module diagram
Fig.4  Convolutional block attention module
Fig.5  Improved spatial attention mechanism
特征
映射
名称 卷积核
尺寸
步幅 填充 输出尺寸
特征1 Conv1-2 3×3 2 1 256×256×64
Conv1-E 1×1 1 0 256×256×32
Unpool1-E 2×2 2 0 512×512×32
特征2 Conv3-2 3×3 2 1 64×64×256
Conv2-E 1×1 1 0 64×64×32
Unpool2-1-E 2×2 4 0 256×256×32
Unpool2-2-E 2×2 2 0 512×512×32
特征3 Conv4-2 3×3 1 1 32×32×512
Conv3-E 1×1 1 0 32×32×32
Unpool3-1-E 2×2 4 0 128×128×32
Unpool3-2-E 2×2 4 0 512×512×32
特征4 Conv3-2-D 3×3 1 1 128×128×256
Conv4-E 1×1 1 0 128×128×32
Unpool4-1-E 2×2 2 0 256×256×32
Unpool4-2-E 2×2 2 0 512×512×32
特征5 Conv1-2-D 3×3 1 1 512×512×64
Conv5-E 1×1 1 0 512×512×32
拼接层 Concat 512×512×160
卷积层 Conv-E 3×3 1 1 512×512×2
预测层 Softmax 512×512×2
Tab.1  Detailed configuration of the edge extraction network
Fig.6  Edge extraction module
Fig.7  Sample images from the Coastline-Segmentation dataset
Fig.8  Sample images from the HRSC2016 dataset
输入图
像编号
输入图像 标签 U-Net PSPNet FusionNet 本文方法 边缘提取结果
图像1
图像2
图像3
图像4
Tab.2  Segmentation results of different methods on the Coastline-Segmentation dataset
输入图
像编号
输入图像 标签 U-Net PSPNet FusionNet 本文方法 边缘提取结果
图像1
图像2
图像3
图像4
Tab.3  Segmentation results of different methods on the HRSC2016 dataset
数据集 方法 交并比 召回率 正确率 F1分数 BR BP BF1
Coastline-Segmentation数据集 U-Net+Canny 92.39 96.63 97.08 96.85 79.87 82.25 81.03
PSPNet+Canny 92.62 95.67 96.82 96.24 78.94 81.23 80.07
FusionNet+Canny 93.22 96.86 97.71 97.28 83.21 85.56 83.20
本文方法 93.14 97.09 98.21 97.64 87.10 91.75 89.36
HRSC2016数据集 U-Net+Canny 90.86 93.36 93.06 93.04 76.92 83.33 79.98
PSPNet+Canny 89.31 91.11 92.55 92.41 79.23 80.56 79.88
FusionNet+Canny 90.26 92.95 94.68 93.28 81.02 82.54 81.77
本文方法 93.14 95.26 96.09 95.67 84.96 87.32 86.13
Tab.4  Comparative study of segmentation performance across different networks (%)
Fig.9  Comparison of ablation experiment results
[1] Liu G, Zhang Y S, Zheng X W, et al. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):617-621.
[2] Zhu C R, Zhou H, Wang R S, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9):3446-3456.
[3] Ji X, Tang L B, Lu T W, et al. DBENet:Dual-branch ensemble network for sea-land segmentation of remote-sensing images[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:5503611.
[4] 陈祥, 孙俊, 尹奎英, 等. 基于Otsu与海域统计特性的SAR图像海陆分割算法[J]. 数据采集与处理, 2014, 29(4):603-608.
[4] Chen X, Sun J, Yin K Y, et al. Sea-land segmentation algorithm of SAR image based on Otsu method and statistical characteristic of sea area[J]. Journal of Data Acquisition and Processing, 2014, 29(4):603-608.
[5] 李业钦, 王常颖, 隋毅, 等. 基于自动阈值分类的高分辨率影像海陆分界线自动提取[J]. 遥感技术与应用, 2021, 36(6):1379-1387.
doi: 10.11873/j.issn.1004-0323.2021.6.1379
[5] Li Y Q, Wang C Y, Sui Y, et al. Automatic extraction of the sea-land boundary from high spatial resolution images based on automatic threshold segmentation[J]. Remote Sensing Technology and Application, 2021, 36(6):1379-1387.
[6] 梁新宇, 罗晨, 权冀川, 等. 基于深度学习的图像语义分割技术研究进展[J]. 计算机工程与应用, 2020, 56(2):18-28.
doi: 10.3778/j.issn.1002-8331.1910-0300
[6] Liang X Y, Luo C, Quan J C, et al. Research on progress of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2020, 56(2):18-28.
doi: 10.3778/j.issn.1002-8331.1910-0300
[7] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7):1526-1548.
doi: 10.3778/j.issn.1673-9418.2211015
[7] Ma Y, Gulimila·K. Research review of image semantic segmentation method in high-resolution remote sensing image interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7):1526-1548.
[8] Lei S, Zou Z X, Liu D G, et al. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features[J]. Infrared Physics & Technology, 2018, 91:12-17.
[9] Elkhateeb E, Soliman H, Atwan A, et al. A novel coarse-to-fine sea-land segmentation technique based on superpixel fuzzy C-means clustering and modified Chan-Vese model[J]. IEEE Access, 2021, 9:53902-53919.
[10] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,2014:655-665.
[11] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.Springer International Publishing,2015:234-241.
[12] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[13] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:6230-6239.
[14] Wu X Y, Chen G, Ding X Q, et al. Multiscale deep fully convolutional network for sea-land segmentation of surveillance images[C]//2020 International Conference on Image,Video Processing and Artificial Intelligence. SPIE, 2020:29-35.
[15] Ji X, Tang L B, Liu T H, et al. HeteroNet:A heterogeneous encoder-decoder network for sea-land segmentation of remote sensing im-ages[J]. Journal of Electronic Imaging, 2023, 32(5):053016.
[16] Zhao L, Zhang Y S, Xue W, et al. Fast and accurate sea-land segmentation of SAR imagery based on multi-source data registration[J]. Geocarto International, 2022, 37(26):13748-13768.
[17] Gao P, Tian J W. A novel model for edge aware sea-land segmentation[C]//MIPPR 2019: Remote Sensing Image Processing,Geographic Information Systems,and Other Applications. SPIE,2020:107-114.
[18] 梁烽, 张瑞祥, 柴英特, 等. 一种结合上下文与边缘注意力的SAR图像海陆分割深度网络方法[J]. 武汉大学学报(信息科学版), 2023, 48(8):1286-1295.
[18] Liang F, Zhang R X, Chai Y T, et al. A sea-land segmentation method for SAR images using context-aware and edge attention based CNNs[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8):1286-1295.
[19] Chen L, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv, 2017(2017-06-17). http://arxiv.org/abs/1706.05587.
url: http://arxiv.org/abs/1706.05587
[20] Quan T M, Hildebrand D G C, Jeong W K. FusionNet:A deep fully residual convolutional neural network for image segmentation in connectomics[J]. Frontiers in Computer Science, 2021, 3:613981.
[21] He K M, Zhang X Y, Ren S Q, et al. Deep re-sidual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:770-778.
[22] Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]// Computer Vision-ECCV 2018.Springer International Publishing,2018:3-19.
[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//31st Annual Conference on Neural Information Processing Systems (NIPS).ACM,2017:6000-6010.
[24] 杨先增, 周亚男, 张新, 等. 融合边缘特征与语义信息的人工坑塘精准提取方法[J]. 地球信息科学学报, 2022, 24(4):766-779.
doi: 10.12082/dqxxkx.2022.210489
[24] Yang X Z, Zhou Y N, Zhang X, et al. Accurate extraction of artificial pit-pond integrating edge features and semantic information[J]. Journal of Geo-Information Science, 2022, 24(4):766-779.
[25] Zhang Y, Liu F G, Tang Q. Utilize spatial prior in ground truth:Spatial-enhanced loss for semantic segmentation[C]// Artificial Neural Networks and Machine Learning-ICANN 2022.Springer Nature Switzerland,2022:312-321.
[26] Li X Y, Sun X F, Meng Y X, et al. Dice loss for data-imbalanced NLP tasks[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,2020:465-476.
[27] Salehi S S M, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C]// Machine Learning in Medical Imaging. Springer International Publishing,2017:379-387.
[28] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
[29] Kervadec H, Bouchtiba J, Desrosiers C, et al. Boundary loss for highly unbalanced segmentation[J]. Medical Image Analysis, 2021, 67:101851.
[30] Yang T, Jiang S L, Hong Z H, et al. Sea-land segmentation using deep learning techniques for Landsat8 OLI imagery[J]. Marine Geodesy, 2020, 43(2):105-133.
[31] Liu Z K, Yuan L, Weng L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]// Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. SciTePress,2017:324-331.
[1] HE Xiaojun, LUO Jie. Semantic segmentation of high-resolution remote sensing images based on context- and class-aware feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(2): 1-10.
[2] ZHENG Zongsheng, GAO Meng, ZHOU Wenhuan, WANG Zhenghan, HUO Zhijun, ZHANG Yuewei. Densely connected multiscale semantic segmentation for land cover based on the iterative optimization strategy for samples[J]. Remote Sensing for Natural Resources, 2025, 37(2): 11-18.
[3] PANG Min. An intelligent platform for extracting patches from multisource domestic satellite images and its application[J]. Remote Sensing for Natural Resources, 2025, 37(2): 148-154.
[4] CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
[5] LIU Chenchen, GE Xiaosan, WU Yongbin, YU Haikun, ZHANG Beibei. A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+[J]. Remote Sensing for Natural Resources, 2025, 37(1): 31-37.
[6] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[7] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[8] LI Shiqi, YAO Guoqing. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
[9] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[10] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[11] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[12] MA Hui, LIU Bo, DU Shihong. Multi-class change detection using a multi-task Siamese network of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(1): 77-85.
[13] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[14] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[15] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech