Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 145-152     DOI: 10.6046/zrzyyg.2022197
|
Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR
LIN Jiahui1,2,3(), LIU Guang1,2,3, FAN Jinghui4(), ZHAO Hongli4, BAI Shibiao5,6, PAN Hongyu1,2,3
1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
5. College of Marine Sciences and Engineering, Nanjing Normal University, Nanjing 210023, China
6. Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Download: PDF(3020 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Surface subsidence caused by the exploitation of mineral resources must be considered during the development and utilization of land and space in mining areas. Furthermore, it serves as a significant indication of underground areas subjected to illicit mining. The exploitation of mineral resources is generally conducted in widespread, uneven, and dispersed areas, making it necessary to quickly and accurately identify and extract the spatial distribution of mining subsidence in large areas. This study determined the multitemporal differential interferometric phase diagram of mining areas using the differential interferometric synthetic aperture Radar (D-InSAR) technique. Furthermore, it trained networks for the intelligent identification of mining subsidence by employing deep-learning FCN-8s, PSPNet, Deeplabv3, and U-Net models. The results show that the U-Net model enjoys a high detection accuracy and a short detection time. To improve the semantic segmentation and extraction accuracy of information about mining subsidence, this study introduced the efficient channel attention (ECA) module into the conventional U-Net model during the training. Compared with the conventional model, the improved U-Net model increased the intersection over union (IOU) corresponding to mining subsidence by 2.54 percentage points.

Keywords U-Net model      D-InSAR      extraction of mining subsidence      semantic segmentation      attention module     
ZTFLH:  TP79  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiahui LIN
Guang LIU
Jinghui FAN
Hongli ZHAO
Shibiao BAI
Hongyu PAN
Cite this article:   
Jiahui LIN,Guang LIU,Jinghui FAN, et al. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022197     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/145
Fig.1  Geographical location of the study area
Fig.2  Technical flow chart
Path113_Frame116 Path113_Frame121
20191116,20191128 20191011,20191104
20191116,20191210 20191104,20191128
20191128,20191210 20191116,20191128
20191128,20191222 20191128,20191210
20191210,20191222 20191210,20191222
Tab.1  Differential interference image pairs used in the experiment
样本1 样本2 样本3
相位图
标记图
Tab.2  Mining subsidence phase diagram and labeled diagram
Fig.3  ECA-UNet model structure
模型 PA/% MIoU
/%
IoU
(背景)
/%
IoU
(采矿
沉陷)/%
训练
时间/h
FCN-32s 97.71 73.68 98.21 49.15 1.84
FCN-16s 98.16 76.61 98.38 54.84 1.88
FCN-8s 98.29 78.19 98.51 57.87 2.11
PSPNet 98.16 79.21 98.65 59.77 6.50
Deeplabv3 98.20 79.71 98.57 60.85 7.50
U-Net 98.31 79.24 98.27 60.20 5.08
本文模型 98.55 80.58 98.41 62.74 6.36
Tab.3  Accuracy evaluation of different models on test set
场景 相位图 标记图 FCN-8s PSPNet Deeplabv3 U-Net 本文模型
场景1
场景2
场景3
Tab.4  Results of different models
Fig.4  Mining subsidence phase diagram and extraction result
Fig.5  Water bodies wrongly divided into mining subsidence areas
[1] 胡振琪, 龙精华, 张瑞娅, 等. 中国东北多煤层老矿区采煤沉陷地损毁特征与复垦规划[J]. 农业工程学报, 2017, 33(5):238-247.
[1] Hu Z Q, Long J H, Zhang R Y, et al. Damage characteristics and reclamation planning of coal mining subsidence land in old mining areas in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5):238-247.
[2] 刘辉, 朱晓峻, 程桦, 等. 高潜水位采煤沉陷区人居环境与生态重构关键技术:以安徽淮北绿金湖为例[J]. 煤炭学报, 2021, 46(12):4021-4032.
[2] Liu H, Zhu X J, Cheng H, et al. Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:A case study from Lyujin Lake,Huaibei[J]. Journal of China Coal Society, 2021, 46(12):4021-4032.
[3] Ignacy D. Comprehensive method of assessing the flood threat of artificially drained mine subsidence areas for identification and sustainable repair of mining damage to the aquatic environment[J]. Water Resources and Industry, 2021, 26:100153.
doi: 10.1016/j.wri.2021.100153 url: https://linkinghub.elsevier.com/retrieve/pii/S2212371721000160
[4] 李佳洺, 余建辉, 张文忠. 中国采煤沉陷区空间格局与治理模式[J]. 自然资源学报, 2019, 34(4):867-880.
doi: 10.31497/zrzyxb.20190415
[4] Li J M, Yu J H, Zhang W Z. Spatial distribution and governance of coal-mine subsidence in China[J]. Journal of Natural Resources, 2019, 34(4):867-880.
doi: 10.31497/zrzyxb.20190415 url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20190415
[5] Donnelly L J, De La Cruz H, Asmar I. The monitoring and prediction of mining subsidence in the Amaga,Angelopolis,Venecia and Bolombolo Regions,Antioquia,Colombia[J]. Engineering Geology, 2001, 59(1-2):103-114.
doi: 10.1016/S0013-7952(00)00068-5 url: https://linkinghub.elsevier.com/retrieve/pii/S0013795200000685
[6] Liu C, Zhou F, Gao J X, et al. Some problems of GPS RTK technique application to mining subsidence monitoring[J]. International Journal of Mining Science and Technology, 2012, 22(2):223-228.
doi: 10.1016/j.ijmst.2012.03.001 url: https://linkinghub.elsevier.com/retrieve/pii/S2095268612000493
[7] Wang Z, Wang Z, Liu G, et al. Monitoring the coal mining subsidence in Jibei mine area using D-InSAR technique[C]// 2009 International Conference on Information Engineering and Computer Science.IEEE, 2009:1-4.
[8] 刘广, 郭华东, Ramon H, 等. InSAR技术在矿区沉降监测中的应用研究[J]. 国土资源遥感, 2008, 20(2):51-55.doi:10.6046/gtzyyg.2008.02.13.
doi: 10.6046/gtzyyg.2008.02.13
[8] Liu G, Guo H D, Ramon H, et al. The application of InSAR technology to mining area subsidence monitoring[J]. Remote Sensing for Land and Resources, 2008, 20(2):51-55.doi:10.6046/gtzyyg.2008.02.13.
doi: 10.6046/gtzyyg.2008.02.13
[9] Guéguen Y, Deffontaines B, Fruneau B, et al. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and persistent scatterer interferometry (Northern France)[J]. Journal of Applied Geophysics, 2009, 69(1):24-34.
doi: 10.1016/j.jappgeo.2009.02.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0926985109000275
[10] Carnec C, Massonnet D, King C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. Geophysical Research Letters, 1996, 23(24):3579-3582.
doi: 10.1029/96GL03042 url: http://doi.wiley.com/10.1029/96GL03042
[11] Ge L, Chang H C, Rizos C. Mine subsidence monitoring using multi-source satellite SAR images[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(3):1742-1745.
[12] Wang Z, Zhang J, Liu G. Measuring land subsidence by PALSAR interferometry in Yanzhou coal mine area[C]// International Conference on Image Processing and Pattern Recognition in Industrial Engineering.SPIE, 2010, 7820:815-822.
[13] 白泽朝, 汪宝存, 靳国旺, 等. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2):210-217.doi:10.6046/gtzyyg.2019.02.29.
doi: 10.6046/gtzyyg.2019.02.29
[13] Bai Z C, Wang B C, Jin G W, et al. Applicability analysis of ground deformation monitoring in mining area by Sentinel-1A data[J]. Remote Sensing for Land and Resources, 2019, 31(2):210-217.doi: 10.6046/gtzyyg.2019.02.29.
doi: 10.6046/gtzyyg.2019.02.29
[14] 张腾, 谢帅, 黄波, 等. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2):213-219.doi:10.6046/gtzyyg.2020206.
doi: 10.6046/gtzyyg.2020206
[14] Zhang T, Xie S, Huang B, et al. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land and Resources, 2021, 33(2):213-219.doi:10.6046/gtzyyg.2020206.
doi: 10.6046/gtzyyg.2020206
[15] He Q, Zhang Y, Wu H, et al. Mining subsidence monitoring with modified time-series SAR interferometry method based on the multi-level processing strategy[J]. IEEE Access, 2021, 9:106039-106048.
doi: 10.1109/ACCESS.2021.3099633 url: https://ieeexplore.ieee.org/document/9494370/
[16] Xing X M, Zhu J J, Wang Y Z, et al. Time series ground subsidence inversion in mining area based on CRInSAR and PSInSAR integration[J]. Journal of Central South University, 2013, 20(9):2498-2509.
doi: 10.1007/s11771-013-1762-x url: http://link.springer.com/10.1007/s11771-013-1762-x
[17] Lesniak A, Porzycka S, Graniczny M. Subsidence analysis in mining area of Dabrowskie coal basin using PSInSAR technique[C]// 13th European Meeting of Environmental and Engineering Geophysics.European Association of Geoscientists and Engineers, 2007.
[18] Han S, Zhao B, Bai Y, et al. Mining subsidence research based on SBAS-InSAR in Yaojie coal mine[J]. Mine Surveying, 2019, 47:1-5.
[19] 李梦梦, 范雪婷, 陈超, 等. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4):43-54.doi:10.6046/zrzyyg.2020137.
doi: 10.6046/zrzyyg.2020137
[19] Li M M, Fan X T, Chen C, et al. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4):43-54.doi:10.6046/zrzyyg.2020137.
doi: 10.6046/zrzyyg.2020137
[20] 史珉, 宫辉力, 陈蓓蓓, 等. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4):55-63.doi:10.6046/zrzyyg.2020341.
doi: 10.6046/zrzyyg.2020341
[20] Shi M, Gong H L, Chen B B, et al. Monitoring of land subsidence in Beijing - Tianjin - Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4):55-63.doi:10.6046/zrzyyg.2020341.
doi: 10.6046/zrzyyg.2020341
[21] 刘金龙, 郭华东, 宋瑞, 等. 多模式雷达在矿区沉降监测中的应用研究[J]. 遥感技术与应用, 2012, 27(4):584-590.
[21] Liu J L, Guo H D, Song R, et al. The application of multi-mode Radar to mining area subsidence monitoring[J]. Remote Sensing Technology and Application, 2012, 27(4):584-590.
[22] Bała J, Porzycka-Strzelczyk S, Strzelczyk J. Subsidence troughs detection for SAR images:Preliminary results[J]. 15th International Multidisciplinary Scientific GeoConferences(SGEM), 2015:18-24.
[23] Klimczak M, Bała J. Application of the Hough transform for subsidence troughs detection in SAR images[J]. 17th International Multidisciplinary Scientific GeoConference(SGEM), 2017:819-826.
[24] Bała J, Dwornik M, Franczyk A J S. Automatic subsidence troughs detection in SAR interferograms using circlet transform[J]. Sensors, 2021, 21(5):1706.
doi: 10.3390/s21051706 url: https://www.mdpi.com/1424-8220/21/5/1706
[25] Porzycka-Strzelczyk S, Rotter P, Strzelczyk J. Automatic detection of subsidence troughs in SAR interferograms based on circular Gabor filters[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6):873-876.
doi: 10.1109/LGRS.2018.2815782 url: https://ieeexplore.ieee.org/document/8327841/
[26] 张堯. 基于InSAR技术大同煤田沉陷区的监测与识别[D]. 北京: 中国地质大学(北京), 2020.
[26] Zhang Y. Monitoring and identification of subsidence area in Datong coalfield based on InSAR technology[D]. Beijing: China University of Geoscience (Beijing), 2020.
[27] Wu Z, Zhang H, Wang Y, et al. A deep learning based method for local subsidence detection and InSAR phase unwrapping:Application to mining deformation monitoring[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020:20-23.
[28] Anantrasirichai N, Biggs J, Kelevitz K, et al. Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network[J]. IEEE Transactions on Geo-science and Remote Sensing, 2020, 59(4):2940-2950.
doi: 10.1109/TGRS.2020.3018315 url: https://ieeexplore.ieee.org/document/9181454/
[29] Valade S, Ley A, Massimetti F, et al. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence:The MOUNTS monitoring system[J]. Remote Sensing, 2019, 11(13):1528.
doi: 10.3390/rs11131528 url: https://www.mdpi.com/2072-4292/11/13/1528
[30] Anantrasirichai N, Biggs J, Albino F, et al. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets[J]. Remote Sensing of Environment, 2019, 230:111179.
doi: 10.1016/j.rse.2019.04.032 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571930183X
[31] Anantrasirichai N, Biggs J, Albino F, et al. Application of machine learning to classification of volcanic deformation in routinely generated InSAR data[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(8):6592-6606.
doi: 10.1029/2018JB015911 url: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JB015911
[32] Wu Z, Zhang H, Wang Y, et al. A deep learning based method for local subsidence detection and InSAR phase unwrapping:Application to mining deformation monitoring[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020:20-23.
[33] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431-3440.
[34] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2881-2890.
[35] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv, 2017(2017-12-5). http://arxio.org/pdf/1706.05587.pdf.
url: http://arxio.org/pdf/1706.05587.pdf
[36] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
[37] Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:11531-11539.
[38] Xu Z, Wu C, Zheng E, et al. Semantic segmentation of buildings in remote sensing images based on dense residual learning and channel adaption[C]// 2019 4th International Conference on Electromechanical Control Technology and Transportation (ICECTT).IEEE, 2019:117-123.
[39] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the European Conference on Computer Vision (ECCV), 2018:801-818.
[40] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition.[C]// 3rd International Conference on Learning Representations (ICLR), 2015:1-14.
[41] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[1] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[2] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[3] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[4] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[5] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
[6] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[7] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[8] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[9] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[10] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[11] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[12] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[13] LIU Zhao, LIAO Feifan, ZHAO Tong. Remote sensing image urban built-up area extraction and optimization method based on PSPNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 84-89.
[14] LIU Shangwang, CUI Zhiyong, LI Daoyi. Multi-task learning for building object semantic segmentation of remote sensing image based on Unet network[J]. Remote Sensing for Land & Resources, 2020, 32(4): 74-83.
[15] LI Yu, XIAO Chunjiao, ZHANG Hongqun, LI Xiangjuan, CHEN Jun. Remote sensing image semantic segmentation using deep fusion convolutional networks and conditional random field[J]. Remote Sensing for Land & Resources, 2020, 32(3): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech