Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 141-151     DOI: 10.6046/zrzyyg.2024299
|
Trend analysis and prediction method of ground deformation using TS-InSAR-based combination-long short-term memory
WEN Yi1,2,3,4(), ZHANG Ling1,2,3, KONG Hanquan5, WAN Xiangxing1,2,3(), GE Daqing1,2,3, LIU Bin1,2,3
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083,China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology,Ministry of Natural Resources,Beijing 100083,China
3. Technology Innovation Center for Geohazard Identification and Monitoring with Earth Observation System,Ministry of Natural Resources,Beijing 100083,China
4. School of Geosciences and Surveying Engineering,China University of Mining and Technology (Beijing) 100083,China
5. Heilongjiang Institute of Geological Mapping and Geographic Information,Harbin 150030,China
Download: PDF(9007 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Time-series interferometric synthetic aperture radar (TS-InSAR) technology has been widely used in ground deformation monitoring and prediction. However,current research remains insufficient in the correlation and temporal lag between groundwater and ground deformation. Moreover,InSAR-based prediction models for ground deformation mostly rely on a single InSAR data,which limits the prediction accuracy and generalization ability of the models. To address these challenges,this study proposed a combination-long short-term memory (C-LSTM) model that integrates groundwater level,rainfall,and InSAR deformation data. This model was employed to evaluate the prediction and accuracy of single-factor and multi-factor models,respectively. The results revealed a temporal lag between ground deformation and changes in groundwater level. The optimal feature combination,obtained through model training using groundwater and rainfall data,exhibited significant improvements in prediction accuracy compared to single-factor predictions,with the coefficient of determination (R2) increasing by 2.45%,1.52%,4.16%,8.08%,5.08%,and 1.45% respectively. The model enhances the prediction accuracy of ground deformation by incorporating model feature combinations with high correlation with ground deformation.

Keywords time-series interferometric synthetic aperture radar (TS-InSAR)      ground deformation      correlation analysis      combination-long short-term memory (C-LSTM)     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi WEN
Ling ZHANG
Hanquan KONG
Xiangxing WAN
Daqing GE
Bin LIU
Cite this article:   
Yi WEN,Ling ZHANG,Hanquan KONG, et al. Trend analysis and prediction method of ground deformation using TS-InSAR-based combination-long short-term memory[J]. Remote Sensing for Natural Resources, 2025, 37(5): 141-151.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024299     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/141
Fig.1  Map of the study area
卫星影像 Sentinel-1A-IW-SAR-SLC
时间范围 2018-01-03—2022-12-20
主影像 2019-01-22
时间基线/d 12~108
垂直基线/m -150~150
干涉对 572
DEM Copernicus-30
Tab.1  Information on remote sensing data
Fig.2  Technology roadmaps
Fig.3  Structure of the C-LSTM model
Fig.4  Validation results of IPTA-InSAR and Stacking-InSAR
Fig.5  IPTA-InSAR time-series deformation results for the capital international airport and its surroundings
Fig.6  Long time-series cumulative deformation
形变结果 王家场 米各庄-2 沙陀
累计形变量/mm -14.38 -23.46 -26.32
形变速率/(mm·a-1 -1.59 -3.66 -3.69
Tab.2  Monitoring station InSAR deformation results
Fig.7  Relationship between groundwater level and cumulative deformation
地点 相关系数r 斜率 R2 RMSE
小天竺 0.76 0.71 0.54 0.18
王家场 0.46 0.55 0.17 0.32
米各庄-2 0.55 0.67 0.21 0.28
沙陀 0.43 0.48 0.18 0.25
Tab.3  Accuracy assessment of groundwater levels and cumulative deformation
Fig.8  Scatterplot for correlation analysis
Fig.9  Lag analysis line graph
类型 参数值
步长 15
训练集和测试集比例 7∶3
训练轮数 100
训练批次个数 100
特征信息维度 1~6
隐藏层 3×LSTM+2×dropout
Tab.4  LSTM model parameter setting
Fig.10  IPTA-InSAR results and groundwater monitoring station locations
因子 RMSE MAE MAPE R2 r
D1_i 0.026 8 0.022 1 3.233 6 0.960 8 0.992 0
D2_i 0.016 6 0.013 6 1.684 4 0.966 7 0.993 4
D3_i 0.022 6 0.020 4 2.607 7 0.942 5 0.992 8
D4_i 0.027 3 0.024 4 3.027 6 0.887 4 0.979 9
D5_i 0.020 9 0.019 4 2.179 5 0.940 4 0.995 8
D6_i 0.015 1 0.013 2 2.081 2 0.973 9 0.993 0
Tab.5  Single-factor prediction results
因子 RMSE MAE MAPE R2 r
D1_i_q_1_2 0.017 0 0.012 8 1.839 8 0.984 3 0.994 3
D2_i_q 0.012 4 0.009 7 1.221 0 0.981 4 0.995 7
D3_i_q 0.012 8 0.009 7 1.275 9 0.981 7 0.993 9
D4_i_f 0.016 5 0.012 6 1.602 2 0.959 1 0.986 6
D5_i_q_f 0.009 3 0.007 0 0.830 3 0.988 2 0.995 2
D6_i_f 0.010 2 0.007 6 1.180 0 0.988 0 0.994 4
Tab.6  Multi-factor prediction results
Fig.11  Single-factor feature and Multi-factor feature deformation prediction results
[1] Dai K, Shi X, Gou J, et al. Diagnosing subsidence geohazard at Beijing capital international airport,from high-resolution SAR interferometry[J]. Sustainability, 2020, 12(6):2269.
[2] Lu Z, Yang H, Zeng W, et al. Geological hazard identification and susceptibility assessment based on MT-InSAR[J]. Remote Sensing, 2023, 15(22):5316.
[3] 田芳, 罗勇, 周毅, 等. 北京地面沉降与地下水开采时空演变对比[J]. 南水北调与水利科技, 2017, 15(2):163-169.
[3] Tian F, Luo Y, Zhou Y, et al. Contrastive analysis of spatial-temporal evolution between land subsidence and groundwater exploitation in Beijing[J]. South-to-North Water Transfers and Water Science and Technology, 2017, 15(2):163-169.
[4] Zhang Z, Hu C, Wu Z, et al. Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies[J]. Scientific Reports, 2023, 13(1):8031.
doi: 10.1038/s41598-023-35152-1 pmid: 37198287
[5] Shi J, Wang Z, Zhang Z, et al. Assessment of deep groundwater over-exploitation in the North China plain[J]. Geoscience Frontiers, 2011, 2(4):593-598.
[6] Chen B, Gong H, Chen Y, et al. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China[J]. Science of the Total Environment, 2020, 735:139111.
[7] Li Z H, Yu C, Xiao R Y, et al.. Entering a new era of InSAR:Advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):1-4.
[8] Zhang L, Dai K, Deng J, et al. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR[J]. Remote Sensing, 2021, 13(18):3662.
[9] Zhang Y, Zhang J, Wu H, et al. Monitoring of urban subsidence with SAR interferometric point target analysis:A case study in Suzhou,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5):812-818.
[10] Lattari F, Rucci A, Matteucci M. A deep learning approach for change points detection in InSAR time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-16.
[11] Koutník J, Greff K, Gomez F, et al. A Clockwork RNN[J]. Computer Science, 2014,1863-1871
[12] 刘明坤, 贾三满, 褚宏亮. 北京市地面沉降监测系统及技术方法[J]. 地质与资源, 2012, 21(2):244-249.
[12] Liu M K, Jia S M, Chu H L. The monitoring system and technologies of land subsidence in Beijing[J]. Geology and Resources, 2012, 21(2):244-249.
[13] Hu B, Wang H S, Sun Y L, et al. Long-term land subsidence monitoring of Beijing (China) using the small baseline subset (SBAS) technique[J]. Remote Sensing, 2014, 6(5):3648-3661.
[14] 雷坤超. 南水北调前后北京平原区地下水和地面沉降演变特征[J]. 地质学报, 2024, 98(2):591-610.
[14] Lei K C. Characteristics of groundwater and land subsidence evolution before and after the South-to-North Water Diversion Project in Beijing,China[J]. Acta Geologica Sinica, 2024, 98(2):591-610.
[1] ZHOU Yujing, JIN Xiaomei, MA Jingxuan, LI Qing. Variations in area and water volume of East Dabuxun Lake,Qinghai Province[J]. Remote Sensing for Natural Resources, 2025, 37(5): 15-23.
[2] MA Maonan, CHANG Liang, YU Guoqiang, ZHOU Jianwei, HAN Haihui, ZHANG Qunhui, CHEN Xiaoyan, DU Chao. Spatiotemporal changes in land use and their driving factors in the Golmud River basin from 1980 to 2020[J]. Remote Sensing for Natural Resources, 2025, 37(4): 184-193.
[3] LU Jiantao, ZHENG Jianghua, PENG Jian, XIAO Xianghua, LI Gangyong, LIU Liang, WANG Renjun, ZHANG Jianli. Spatiotemporal evolution of ecological vulnerability in Xinjiang and its response to drought[J]. Remote Sensing for Natural Resources, 2025, 37(3): 253-264.
[4] WANG Hao, LIU Cai, CHEN Li, YANG Jinzhong, WEN Jing, SUN Yaqin, AN Na, ZHOU Yingjie, SHAO Zhitao. Correlation analysis between nonmetallic mines for building materials and social economy in the Tibet Autonomous Region[J]. Remote Sensing for Natural Resources, 2024, 36(3): 233-239.
[5] LI Weiyang, SHI Haijing, NIE Weiting, YANG Xinyuan. Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters[J]. Remote Sensing for Natural Resources, 2024, 36(2): 229-238.
[6] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[7] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[8] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[9] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[10] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[11] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[12] LI Li. Remote sensing bathymetric inversion for the Xisha Islands based on WorldView-2 data: A case study of Zhaoshu Island and South Island[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 170-175.
[13] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
[14] YANG Keming, ZHOU Yujie, QI Jianwei, WANG Linwei, LIU Shiwen. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 134-139.
[15] FU Yin-Zhen, WANG Xiao-Qin, JIANG Hong. The Correlation between LAI and Vegetation Index of Masson Pine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech